Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:21:10.995Z Has data issue: false hasContentIssue false

Alkali emission accompanying fracture of sodium silicate glasses

Published online by Cambridge University Press:  31 January 2011

S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
L.C. Jensen
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
L.R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Get access

Abstract

Measurements of atomic Na emission accompanying the fracture of sodium trisilicate glass and a soda lime glass in vacuum were made by quadrupole mass spectroscopy and surface ionization techniques. Peak Na° emission intensities occur some 3–6 ms after the fracture event and decay over tens of milliseconds. This behavior is attributed to the diffusion of Na+ ions into a layer of damaged material at the surface where the ions are subsequently neutralized and thermally emitted as Na°. Charge carriers generated during fracture and subsequently trapped at defect sites apparently play important roles in charge compensating Na+ diffusion and in neutralizing Na+. During the first 300 ms following fracture, we also observe intense, short lived (400 μs) bursts in Na° emission which may be associated with catastrophic relaxation of residual stresses. The kinetics of Na emission suggest that the relaxation of newly formed glass surfaces involves rather complex surface physical and chemical processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Dickinson, J. T., Langford, S. C., Jensen, L. C., McVay, G. L., Kelso, J. F., and Pantano, C. G., J. Vac. Sci. Technol. A 6, 1084 (1988).CrossRefGoogle Scholar
2.Dickinson, J. T., Jensen, L. C., and Jahan-Latibari, A., J. Vac. Sci. Technol. A 2, 1112 (1984).CrossRefGoogle Scholar
3.Langford, S. C., Dickinson, J. T., and Jensen, L. C., J. Vac. Sci. Technol. A 7, 1829 (1989).CrossRefGoogle Scholar
4.Dickinson, J. T., Jensen, L. C., and McKay, M. R., J. Vac. Sci. Technol. A 4, 1648 (1986).CrossRefGoogle Scholar
5.Dickinson, J. T., Jensen, L. C., and McKay, M. R., J. Vac. Sci. Technol. A 5, 1162 (1987).CrossRefGoogle Scholar
6.Langford, S. C., Dickinson, J. T., and Jensen, L. C., J. Appl. Phys. 62, 1437 (1987).CrossRefGoogle Scholar
7.Dickinson, J. T., Jensen, L. C., Langford, S. C., and Hirth, J. P., J. Mater. Res. 6, 112 (1991).CrossRefGoogle Scholar
8.Lacharme, J. P., Champion, P., and Léger, D., Scanning Electron Microsco. 1981, Part I, 237243 (1981).Google Scholar
9.Pantano, C. G., Kelso, J. F., and Suscavage, M. J., in Advances in Materials Characterization (MRS Vol. 15), edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum Press, New York, 1983), pp. 138.Google Scholar
10.Kelso, J. F., Pantano, C. G., and Garofalini, S. H., Surf. Sci. 134, L543 (1983).CrossRefGoogle Scholar
11.Garofalini, S. H. and Levine, S. M., J. Am. Ceram. Soc. 68, 376 (1985).CrossRefGoogle Scholar
12.Hench, L. L. and Clark, D. E., J. Non-Cryst. Solids 28, 83 (1978).CrossRefGoogle Scholar
13.Zandberg, E. Ya. and Ionov, N. I., Poverkhnostnaya ionizatsiya (Nauka, Moscow, 1960) [Surface Ionization, translated by Harnik, E. (Israel Program for Scientific Translations, Jerusalem, 1971)].Google Scholar
14.Datz, S. and Taylor, E. H., J. Chem. Phys. 25, 389 (1956).CrossRefGoogle Scholar
15.Donaldson, E. E., Dickinson, J. T., and Bhattacharya, S. K., J. Adhesion 25, 281 (1988).CrossRefGoogle Scholar
16.Donaldson, E. E., Miles, M. H., and Dickinson, J. T., J. Mater. Sci. 24, 4453 (1989).CrossRefGoogle Scholar
17.Kelso, J. F. and Pantano, C. G., J. Vac. Sci. Technol. A 3, 1343 (1985).CrossRefGoogle Scholar
18.Weichert, R. and Schonert, K., J. Mech. Phys. Solids 22, 127133 (1974).CrossRefGoogle Scholar
19.Weichert, R. and Schonert, K., J. Mech. Phys. Solids 26, 151161 (1978).CrossRefGoogle Scholar
20.Weber, Neill and Goldstein, Martin, J. Chem. Phys. 41, 2898 (1964).CrossRefGoogle Scholar
21.Michalske, T. A. and Smith, W. L., Bull. Am. Phys. Soc. 36, 1035 (A) (1991).Google Scholar
22.Wang, Y. X., Ohuchi, F., and Holloway, P. H., J. Am. Vac. Sci. Tech. A 2, 732 (1984).CrossRefGoogle Scholar
23.Garofalini, S. H. and Ziri, D. M., J. Vac. Sci. Technol. A 6, 975 (1988).CrossRefGoogle Scholar
24.Caracciolo, R. and Garofalini, S. H., J. Am. Ceram. Soc. 71, C346 (1988).CrossRefGoogle Scholar
25.Soules, T. F. and Busbey, R. F., J. Chem. Phys. 78, 6307 (1983).CrossRefGoogle Scholar
26.Greaves, G. N., Fontaine, A., Lagarde, P., Raoux, D., and Gurman, S. J., Nature 293, 611 (1983).CrossRefGoogle Scholar
27.Lim, Chung and Day, D. E., J. Am. Ceram. Soc. 60, 198 (1977).CrossRefGoogle Scholar
28.Kelly, J. E. III, Cordaro, J. F., and Tomozawa, M., J. Non-Cryst. Solids 41, 47 (1980).CrossRefGoogle Scholar
29.Vigouroux, J. P., Duraud, J. P., Moel, A. Le, Gressus, C. Le, and Griscom, D. L., J. Appl. Phys. 57, 5139 (1985).CrossRefGoogle Scholar
30.Murray, R. A. and Ching, W. Y., J. Non-Cryst. Solids 94, 144 (1987).CrossRefGoogle Scholar
31.Lawn, B. R., Dabbs, T. P., and Fairbanks, C. J., J. Mater. Sci. 18, 2785 (1983).CrossRefGoogle Scholar
32.Peter, K. W., J. Non-Cryst. Solids 5, 103 (1970).CrossRefGoogle Scholar
33.Arora, A., Marshall, D. B., Lawn, B. R., and Swain, M. V., J. Non- Cryst. Solids 31, 415 (1979).CrossRefGoogle Scholar
34.Marsh, D. M., Fracture of Solids, edited by Drucker, D. C. and Gilman, J. J. (Interscience Publishers, New York, 1963), pp. 143155.Google Scholar
35.Doremus, R. H. and Johnson, W. A., J. Mater. Sci. 14, 2236 (1979).CrossRefGoogle Scholar
36.Doremus, R. H. and Kay, J. F., J. Mater. Sci. 13, 855 (1978).CrossRefGoogle Scholar