Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T07:17:51.629Z Has data issue: false hasContentIssue false

Advances in synchrotron x-ray diffraction and transmission electron microscopy techniques for the investigation of microstructure evolution in proton- and neutron-irradiated zirconium alloys

Published online by Cambridge University Press:  29 April 2015

A. Harte*
Affiliation:
The University of Manchester, Manchester Materials Science Centre, Manchester M13 9PL, United Kingdom
T. Seymour
Affiliation:
The University of Manchester, Manchester Materials Science Centre, Manchester M13 9PL, United Kingdom
E.M. Francis
Affiliation:
The University of Manchester, Manchester Materials Science Centre, Manchester M13 9PL, United Kingdom
P. Frankel
Affiliation:
The University of Manchester, Manchester Materials Science Centre, Manchester M13 9PL, United Kingdom
S.P. Thompson
Affiliation:
Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
D. Jädernäs
Affiliation:
Studsvik Nuclear AB, SE 611 82, Nyköping, Sweden
J. Romero
Affiliation:
Westinghouse Electric Company, Columbia, South Carolina, USA
L. Hallstadius
Affiliation:
Westinghouse Electric Sweden AB, SE 72163 Västerås, Sweden
M. Preuss
Affiliation:
The University of Manchester, Manchester Materials Science Centre, Manchester M13 9PL, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Transmission electron microscopy (TEM) studies provide mechanistic understanding of nanoscale processes, whereas advanced synchrotron XRD (SXRD) enables precise measurements on volumes that are more representative of bulk materials. Therefore, the combined strengths of these techniques can provide new insight into irradiation-induced mechanistic processes. In the present study, their application to Zircaloy-2, proton-irradiated to 2.3, 4.7, and 7.0 dpa at 2 MeV and 350 °C and neutron-irradiated to 9.5 and 13.1 × 1025 n m−2 are exemplified. The application of correlative spectral imaging and structural TEM investigations to the phase transformation of Zr(Fe,Nb)2 precipitates in Low-Sn ZIRLO™, neutron-irradiated to 8.9–9 × 1025 n m−2, demonstrates the possibility of a Cr core nucleation site. Anomalous broadening is observed in SXRD profiles, which is believed to be caused by defect clusters and precursors to dislocation loop nucleation. The challenges to quantitative analysis of dislocations by SXRD are highlighted with reference to the segregation of Fe and Ni to basal planes and dislocation cores, observed by spectral imaging in the TEM.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Djamel Kaoumi

References

REFERENCES

Woo, C.H.: Theory of irradiation deformation in non-cubic metals: Effects of anisotropic diffusion. J. Nucl. Mater. 159, 237256 (1988).Google Scholar
Holt, R.A.: Mechanisms of irradiation growth of alpha-zirconium alloys. J. Nucl. Mater. 159, 310338 (1988).Google Scholar
Gilbon, D., Soniak, A., Doriot, S., and Mardon, J-P.: Irradiation creep and growth behavior, and microstructural evolution of advanced Zr-base alloys. Zirconium in the Nuclear Industry: Twelfth International Symposium ASTM STP 1354, Gabol, G.P. and Moan, G.D. eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp. 5173.Google Scholar
Adamson, R.B.: Effects of neutron irradiation on microstructure and properties of zircaloy. Zirconium in the Nuclear Industry: Twelfth International Symposium ASTM STP 1354, Gabol, G.P. and Moan, G.D. eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp. 1531.Google Scholar
Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190218 (1988).Google Scholar
Was, G.S.: Fundamentals of Radiation Materials Science (Springer Berlin Heidelberg, New York, 2007); p. 83.Google Scholar
Tournadre, L., Onimus, F., Béchade, J-L., Gilbon, D., Cloué, J-M., Mardon, J-P., Feaugas, X., Toader, O., and Bachelet, C.: Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4. J. Nucl. Mater. 425, 7682 (2012).Google Scholar
Zu, X.T., Sun, K., Atzmon, M., Wang, L.M., You, L.P., Wan, F.R., Busby, J.T., Was, G.S., and Adamson, R.B.: Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos. Mag. 85, 649659 (2005).CrossRefGoogle Scholar
Ribárik, G., Ungár, T., and Gubicza, J.: MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 34, 669676 (2001).Google Scholar
Ribárik, G., Gubicza, J., and Ungár, T.: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387389, 343347 (2004).Google Scholar
Balogh, L., Tichy, G., and Ungár, T.: Twinning on pyramidal planes in hexagonal close packed crystals determined along with other defects by x-ray line profile analysis. J. Appl. Crystallogr. 42, 580591 (2009).Google Scholar
Thompson, S.P., Parker, J.E., Potter, J., Hill, T.P., Birt, A., Cobb, T.M., Yuan, F., and Tang, C.C.: Beamline I11 at diamond: A new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80, 075107 (2009).Google Scholar
Borbély, A. and Ungár, T.: X-ray line profiles analysis of plastically deformed metals. C. R. Phys. 13, 293306 (2012).Google Scholar
Vizcaíno, P., Banchik, A.D., and Abriata, J.P.: Synchrotron x-ray diffraction evidences of the amorphization/dissolution of the second phase particles (SPPs) in neutron irradiated Zircaloy-4. Mater. Lett. 62, 491493 (2008).Google Scholar
Béchade, J-L., Menut, D., Doriot, S., Schlutig, S., and Sitaud, B.: X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline. J. Nucl. Mater. 437, 365372 (2013).Google Scholar
Akbashev, A.R., Roddatis, V.V., Vasiliev, A.L., Lopatin, S., Semisalova, A.S., Perov, N.S., Amelichev, V.A., and Kaul, A.R. Reconstructed stacking faults in cobalt-doped hexagonal LuFeO3 revealed by mapping of cation distribution at the atomic scale. CrystEngComm 14, 53735376 (2012).Google Scholar
Hudson, D. and Smith, G.D.W.: Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe. Scr. Mater. 61, 411414 (2009).Google Scholar
Dong, Y., Motta, A.T., and Marquis, E.A.: Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J. Nucl. Mater. 442, 270281 (2013).Google Scholar
Sundell, G., Thuvander, M., Tejland, P., Dahlbäck, M., Hallstadius, L., and Andrén, H-O.: Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure. J. Nucl. Mater. 454, 178185 (2014).Google Scholar
Woo, C.H.: Defect accumulation behaviour in hcp metals and alloys. J. Nucl. Mater. 276, 90103 (2000).Google Scholar
Griffiths, M., Gilbert, R.W., and Carpenter, G.J.C.: Phase instability, decomposition and resdistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation. J. Nucl. Mater. 150, 5366 (1987).Google Scholar
Yang, W.J.S.: Precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 158, 7180 (1988).CrossRefGoogle Scholar
de Carlan, Y., Regnard, C., Griffiths, M., Gilbon, D., and Lemaignan, C.: Influence of iron in the nucleation of <c> component dislocation loops in irradiated Zircaloy-4. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, Bradley, E.R. and Gabol, G.P. eds.; American Society for Testing and Materials: 1996; pp. 638653.Google Scholar
Shishov, V.N., Peregud, M.M., Nikulina, A.V., Kon'kov, V.F., Novikov, V.V., Markelov, V.A., Khokhunova, T.N., Kobylyansky, G.P., Novoselov, A.E., Ostrovsky, Z.E., and Obukhov, A.V.: Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys. J. ASTM Int. 5, 724743 (2011).Google Scholar
King, A.D., Hood, G.M., and Holt, R.A.: Fe-enhancement of self-diffusion in alpha-Zr. J. Nucl. Mater. 185, 174181 (1991).Google Scholar
Christensen, M., Wolf, W., Freeman, C.M., Wimmer, E., Adamson, R.B., Hallstadius, L., Cantonwine, P.E., and Mader, E.V.: Effect of alloying elements on the properties of Zr and the Zr–H system. J. Nucl. Mater. 445, 241250 (2014).Google Scholar
Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 7580 (2013).Google Scholar
Valizadeh, S., Ledergerber, G., Abolhassan, S., Jädernäs, D., Dahlbäck, M., Mader, E.V., Zhou, G., Wright, J., and Hallstadius, L.: Effects of secondary phase particle dissolution on the in-reactor performance of BWR cladding. J. ASTM Int. 8, 729753 (2014).Google Scholar
Azevedo, C.R.F.: Selection of fuel cladding material for nuclear fission reactors. Eng. Failure Anal. 18, 19431962 (2011).CrossRefGoogle Scholar
IAEA-TECDOC-966: Waterside corrosion of zirconium alloys in nuclear power plants, 1998.Google Scholar
NIST: X-ray mass attenuation coefficients - Zirconium. (2014). <http://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z40.html>..>Google Scholar
Rauch, E.F. and Dupy, L.: Rapid spot diffraction patterns identification through template matching. Arch. Metall. Mater. 50, 8799 (2005).Google Scholar
Vincent, R. and Midgley, P.A.: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282 (1994).Google Scholar
Rauch, E.F., Veron, M., Portillo, J., Bultreys, D., Maniette, Y., and Nicolopoulos, S.: Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Microanal. 22, S5S8 (2008).Google Scholar
Francis, E.M., Harte, A., Frankel, P., Haigh, S.J., Jädernäs, D., Romero, J., Hallstadius, L., and Preuss, M.: Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive x-ray spectroscopy (EDX) using an aberration‐corrected (scanning) transmission electron microscope. J. Nucl. Mater. 454, 387397 (2014).Google Scholar
Coaquira, J.A.H., Rechenberg, H.R., and Mestnik Filho, J.: Structural and Mossbauer spectroscopic study of hexagonal Laves-phase Zr(FexCr1-x)2 alloys and their hydrides. J. Alloys Compd. 288, 4249 (1999).Google Scholar
Havinga, E.E., Damsma, H., and Hokkeling, P.: Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure. 1. Preparation and x-ray results. J. Less-Common Met. 27, 169186 (1971).Google Scholar
Perez, R.A., Nakajima, H., and Dyment, F.: Diffusion in alpha-Ti and Zr. Mater. Trans. 44, 213 (2003).Google Scholar
Sabol, G.P., Comstock, R.J., Weiner, R.A., Larouere, P., and Stanutz, R.N.: In-reactor corrosion performance of ZIRLOTM and Zircaloy-4. Zirconium in the Nuclear Industry: Tenth International Symposium ASTM STP 1245, Garde, A.M. and Bradley, E.R. eds.; American Society for Testing and Materials: Philadelphia, 1994; pp. 724744.Google Scholar
Shishov, V.N., Peregud, M.M., Nikulina, A.V., Kobylyansky, G.P., and Ostrovsky, Z.E.: Influence of structure—Phase state of Nb containing Zr alloys on irradiation-induced growth. J. ASTM Int. 2, (2005).Google Scholar
Balogh, L., Brown, D.W., Mosbrucker, P., Long, F., and Daymond, M.R.: Dislocation structure evolution induced by irradiation and plastic deformation in the Zr–2.5Nb nuclear structural material determined by neutron diffraction line profile analysis. Acta Mater. 60, 55675577 (2012).Google Scholar
Groma, I. and Monnet, G.: Analysis of asymmetric broadening of x-ray diffraction peak profiles caused by randomly distributed polarized dislocation dipoles and dislocation walls. J. Appl. Crystallogr. 35, 589593 (2002).Google Scholar
Mughrabi, H., Ungár, T., Kienle, W., and Wilkens, M.: Long-range internal stresses and asymmetric x-ray line-broadening in tensile-deformed [001]-oriented copper single crystals. Philos. Mag. A 53, 793813 (1986).Google Scholar
Ungár, T., Groma, I., and Wilkens, M.: Asymmetric x-ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu crystals. J. Appl. Crystallogr. 22, 2634 (1989).Google Scholar
Larson, B.C. and Schmatz, W.: Huang diffuse scattering from dislocation loops. Phys. Status Solidi B 267, 267275 (1980).Google Scholar
Dederichs, P.H.: The theory of diffuse x ray scattering and its application to the study of point defects and their clusters. J. Phys. F: Met. Phys. 3, (1973).Google Scholar
Austerman, S.B. and Miller, K.T.: Dimensional and x-ray diffraction changes in irradiated single crystal BeO. Phys. Status Solidi B 11, 241253 (1965).Google Scholar
Chute, J.H. and Walker, D.G.: Direct observations of damage in neutron irradiated beryllium oxide. J. Nucl. Mater. 14, 187194 (1964).Google Scholar
Sabine, T.M., Pryor, A.W., and Hickman, B.S.: The scattering of long wavelength neutrons by irradiated beryllium oxide. Philos. Mag. 8, 4357 (1962).CrossRefGoogle Scholar
Warren, B.E. and Averbach, B.L.: The effect of cold-work distortion on x-ray patterns. J. Appl. Phys. 21, 595 (1950).Google Scholar
Wilkens, M.: The mean square stress for restrictedly random distributions of dislocations in a cylindrical body. Acta Met. 17, 11551159 (1969).Google Scholar
Wilkens, M.: The determination of density and distribution of dislocations in deformed single crystals from broadened x-ray diffraction profiles. Phys. Status Solidi A 2, 359370 (1970).Google Scholar
Ungár, T., Tichy, G., Gubicza, J., and Hellmig, R.J.: Correlation between subgrains and coherently scattering domains. Powder Diffr. 20, 366375 (2012).Google Scholar
Ungár, T., Gubicza, J., Ribarik, G., and Borbely, A.: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298310 (2001).Google Scholar
Ribárik, G.: Ph.D. Dissertation, Eötvös Loránd University, 2008.Google Scholar
Idrees, Y., Yao, Z., Kirk, M.A., and Daymond, M.R.: In situ study of defect accumulation in zirconium under heavy ion irradiation. J. Nucl. Mater. 433, 95107 (2013).Google Scholar
Pennycook, S.J. and von Ardenne, B.M.: Scanning Transmission Electron Microscopy (Springer, New York, 2011).Google Scholar
Hood, G.M.: Point defect diffusion in alpha-Zr. J. Nucl. Mater. 159, 149175 (1988).Google Scholar
Griffiths, M.: Comments on precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 170, 294300 (1990).Google Scholar
Motta, A.T., Erwin, K.T., Delaire, O., Birtcher, R.C., Chu, T., Maser, J., Mancini, D.C., and Lai, B.: Synchrotron radiation study of second-phase particles and alloying elements in zirconium alloys. Zirconium in the nuclear Industry: Thirteenth International Symposium ASTM STP 1423, Moan, G.D. and Rudling, P. eds.; ASTM International: West Conshohocken, PA, 2002; pp. 5979.Google Scholar
Bajaj, R., Kammenzind, B.F., and Farkas, D.M.: Effects of neutron irradiation on the microstructure of alpha-annealed Zircaloy-4. Zirconium in the Nuclear Industry: Thirteenth International Symposium ASTM STP 1423, Moan, G.D. and Rudling, P. eds.; ASTM International: West Conshohocken, PA, 2002; pp. 400426.Google Scholar
Gilbon, D. and Simonot, C.: Effect of irradiation on the microstructure of Zircaloy-4. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, Bradley, E.R. and Gabol, G.P. eds.; 1996; pp. 521548.Google Scholar
Griffiths, M., Mecke, J.F., and Winegar, J.E.: Evolution of microstructure in zirconium alloys during irradiation. Zirconium in the Nuclear Industry: Eleventh International Symposium ASTM STP 1295, Bradley, E.R. and Gabol, G.P. eds.; American Society for Testing and Materials: 1996; pp. 580602.Google Scholar
Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 2231 (1953).Google Scholar
Ungár, T. and Borbély, A.: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 31733175 (1996).Google Scholar
Griffiths, M. and Gilbert, R.W.: The formation of c-component defects in zirconium alloys during neutron-irradiation. J. Nucl. Mater. 150, 169181 (1987).Google Scholar
Cockeram, B.V., Leonard, K.J., Snead, L.L., and Miller, M.K.: The use of a laser-assisted Local Electrode Atom Probe and TEM to examine the microstructure of Zircaloy and precipitate structure following low dose neutron irradiation at nominally 358 °C. J. Nucl. Mater. 433, 460478 (2013).Google Scholar
Woo, O.T. and Carpenter, G.J.C.: Radiation-induced precipitation in Zircaloy-2. J. Nucl. Mater. 159, 397404 (1988).Google Scholar