Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:14:12.376Z Has data issue: false hasContentIssue false

Accelerated sintering and phase transformation of TiO2in microwave radiation

Published online by Cambridge University Press:  31 January 2011

Zhi-Peng Xie
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Xu-Dong Fan
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Yong Huang
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
Get access

Abstract

The sintering process and phase transformation of submicrometer powder compacts of TiO2 were investigated using 2.45 GHz microwave radiation. The microwave-sintered samples were densified more rapidly and at much shorter time and lower temperature than that of the conventionally sintered samples. Also, an accelerated phase transformation from anatase to rutile was observed in microwave processing when the dwell time is cut down from 6 h in conventional to 30 min in microwave at 1000 °C. The samples sintered in microwave show a refined microstructure and smaller grain sizes at high density near 98–99% theoretical. In addition, the reasons for rapidly heating behavior and enhanced sintering on TiO2 in microwave are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sutton, W. H., Am. Ceram. Soc. Bull. 68 (2), 376386 (1989).Google Scholar
2.Porada, M. A. Willert, MRS Bull. 18 (1), 5157 (1993).Google Scholar
3.Metaxas, A. C. and Binner, J. G. P., in Advanced Ceramic Processing Technology, edited by Binner, J. G. P. (Noyes Publications, Park Ridge, NJ, 1990), pp. 285367.Google Scholar
4.Plovnick, R. H. and Kiggans, J. O., Am. Ceram. Soc. Bull. 75 (12), 34623464 (1991).CrossRefGoogle Scholar
5.Sheppard, L. M., Am. Ceram. Soc. Bull. 67 (10), 16561661 (1988).Google Scholar
6.Katz, J. D. and Blake, R. D., Am. Ceram. Soc. Bull. 70 (8), 13041307 (1991).Google Scholar
7.Tian, Y. L., Brodwin, M. E., Dewan, H. S., and Johnson, D. L., in Microwave Processing of Materials, edited by Sutton, W. H., Brooks, M. H., and Chabinsky, I. J. (Mater. Res. Soc. Symp. Proc. 124, Pittsburgh, PA, 1988), p. 213.Google Scholar
8.Fang, Y., Agrawal, D. K., Roy, D. M., and Roy, R., J. Mater. Res. 7, 490494 (1992).Google Scholar
9.Patil, D., Mutsuddy, B., and Garard, R., J. Microwave Power Electromagn. Energy 27 (1), 5053 (1992).Google Scholar
10.Xie, Z. P., Li, J. B., Huang, Y., and Kong, X. Y., J. Mater. Sci. Lett. 15, 11581160 (1996).CrossRefGoogle Scholar
11.Tinga, W. R. and Voss, W. A. G., Microwave Power Engineering (Academic Press, New York, 1968).Google Scholar
12.Meek, T. T. and Blake, R. D., J. Mater. Sci. Lett. 5, 270 (1986).CrossRefGoogle Scholar
13.Meek, T. T., Blake, R. D., and Petrovic, J. J., Ceram. Eng. Sci. Proc. 8 (7–8), 861871 (1987).Google Scholar
14.Janney, M. A. and Kimrey, H. D., in Microwave Processing of Materials II, edited by Snyder, W. B., Jr., Sutton, W. H., Iskander, M. F., and Johnson, D. L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1990), pp. 215227.Google Scholar
15.Tian, Y. L., Li, B. S., Shi, J. L., Xu, Y. P., Guo, J. K., and Yen, D. S., in Ceramic Transactions, Vol. 21, “Microwaves: Theory and Application in Material Processing” (The American Ceramic Society, Westerville, OH, 1991), pp. 577584.Google Scholar
16.Varadan, V. K., Ma, Y., Lakhtakia, A., and Varadan, V. V., in Microwave Processing of Materials, edited by Sutton, W. H., Brooks, M. H., and Chabinsky, I. J. (Mater. Res. Soc. Symp. Proc. 124, Pittsburgh, PA, 1988), pp. 4547.Google Scholar
17.Park, S. S. and Meek, T. T., J. Mater. Sci. 26, 63096313 (1991).CrossRefGoogle Scholar
18.Wilson, J. and Kunz, S. M., J. Am. Ceram. Soc. 71 (1), C4041 (1988).CrossRefGoogle Scholar
19.Xie, Z. P., Li, J. B., Yang, J. L., and Huang, Y., J. Basic Sci. Eng. (in Chinese) 2 (3), 132137 (1994).Google Scholar
20.Xu, L. H., Xie, Z. P., Li, J. B., Huang, Y., Fan, X. D., and Xu, H. W., J. Mater. Sci. Lett. 16, 12491251 (1997).CrossRefGoogle Scholar
21.Xie, Z. P., Huang, Y., Wu, J. G., and Zheng, L. L., J. Mater. Sci. Lett. 14, 794795 (1995).CrossRefGoogle Scholar
22.Janney, M. A., Caloun, C. L., and Kimrey, H. D., J. Am. Ceram. Soc. 75 (2), 541546 (1992).CrossRefGoogle Scholar
23.Xie, Z. P., Huang, Y., Zhang, R., Yang, J. L., and Wang, S. H., Am. Ceram. Soc. Bull. 76 (11), 4650 (1997).Google Scholar
24.Johnson, D. L., in Sintering and Heterogeneous Catalysis, edited by Kuczynskl, G. C., Miller, A. E., and Sangent, G. A. (Plenum Publishing Corp., New York, 1984), pp. 243252.Google Scholar
25.Bruce, R. W., in Ceramic Transactions, Vol. 21, “Microwaves: Theory and Application in Material Processing” (The American Ceramic Society, Westerville, OH, 1991), pp. 107116.Google Scholar
26.Runck, R. J., in High-Temperature Technology, edited by Campbell, I. E. (JohnWiley & Sons, Inc., New York, 1956), pp. 2991.Google Scholar
27.Samuels, J. and Brandon, J. R., J. Mater. Sci. 27, 32593265 (1992).CrossRefGoogle Scholar
28.Fan, X. D., Xie, Z. P., Huang, Y., and Xu, L. H., J. Ceram. (in Chinese) 17 (4), 39 (1996).Google Scholar