Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:08:04.272Z Has data issue: false hasContentIssue false

Ab initio investigation of the substitution effects of 2p elements on the electronic structure of γ-Fe4X (X = B, C, N, and O) in the ground state

Published online by Cambridge University Press:  07 January 2016

Antônio Vanderlei dos Santos*
Affiliation:
Ciências Exatas e da Terra, Universidade Regional Integrada do Alto Uruguai e das Missões – URI Campus Santo Ângelo, CEP 98802-470 Santo Ângelo, Rio Grande do Sul, Brazil
Carlos Ariel Samudio Pérez*
Affiliation:
Instituto de Ciências Exatas e Geociências, Universidade de Passo Fundo – UPF Campus de Passo Fundo, CEP 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The ground state properties of γ-Fe4X (X = B, C, N, and O) were studied by means of the density functional theory. The calculations were performed using the linearized augmented plane wave method as implemented in the Wien2k code. From the equilibrium cohesive energy point of view, all the compounds are ferromagnetic and the stability increases in the following sequence: γ-Fe4O, γ-Fe4N, γ-Fe4B, γ-Fe4C. The electron density suggests that the chemical bonding in γ-Fe4X (X = B, C, N, and O) is a mixture of covalent and ionic character that vary in intensity with the X atom. The magnetic moments and hyperfine interactions are clearly and differently affected by the nature of the X atom. The results indicated that there is not a linear relation between the 2p electron number of the X atom and the magnetic properties of the compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jack, K.H.: The iron-nitrogen system: The preparation and the crystal structures of nitrogen-austenite (Γ) and nitrogen-martensite (α´). Proc. R. Soc. London, Ser. A 208, 216224 (1951).Google Scholar
Kim, T.K. and Takahashi, M.: New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492494 (1972).Google Scholar
Coey, J.M.D. and Smith, P.A.I.: Magnetic nitrides. J. Magn. Magn. Mater. 200, 405424 (1999).Google Scholar
Rissanen, L., Neubauer, M., Lieb, K.P., and Schaaf, P.: The new cubic iron-nitride phase FeN prepared by reactive magnetron sputtering. J. Alloys Compd. 274, 7482 (1998).Google Scholar
Jack, K.H.: The iron-nitrogen system: The crystal structure of ε-phase iron nitrides. Acta Cryst. 5, 404411 (1952).Google Scholar
Wiener, G.W. and Berger, J.A.: Structure and magnetic properties of some transition metalnitrides. J. Met. 7, 360365 (1955).Google Scholar
Frazer, B.C.: Magnetic structure of Fe4N. Phys. Rev. 112, 751754 (1958).Google Scholar
Shirane, G., Takei, W.J., and Ruby, S.L.: Mössbauer study of hyperfine fields and isomer shifts in Fe4N. Phys. Rev. 126, 4952 (1962).Google Scholar
Suzuki, S., Sakumoto, H., Minegishi, J., and Omote, Y.: Coercivity and unit particle size of metal pigment. IEEE Trans. Magn. 17, 30173019 (1981).Google Scholar
Tagawa, K., Kita, E., and Tasaki, A.: Synthesis of fine Fe4N powder and its magnetic characteristics. Jpn. J. Appl. Phys. 21, 15961598 (1982).Google Scholar
Matar, S., Mohn, P., Demazeau, G., and Siberchicot, B.: The calculated electronic and magnetic structures of Fe4N and Mn4N. J. Phys. 49, 17611768 (1988).Google Scholar
Sakuma, A.: Self-consistent calculations for the electronic structure of iron nitrides Fe3N, Fe4N and Fe16N2 . J. Magn. Magn. Mater. 102, 127134 (1991).Google Scholar
Kuhnen, C.A., de Figueredo, R.S., Drago, V., and da Silva, E.Z.: Mössbauer studies and electronic structure of γ´-Fe4N. J. Magn. Magn. Mater. 111, 95104 (1992).Google Scholar
Coehoorn, R., Daalderop, G.H.O., and Jansen, H.J.F.: Full-potential calculations of the magnetization of Fe16N2 and Fe4N. Phys. Rev. B 48, 38303834 (1993).Google Scholar
Ishida, S. and Kitawatase, K.: Electronic structure and magnetic properties of iron nitrides. J. Magn. Magn. Mater. 104–107, 19331934 (1992).Google Scholar
Paduani, C. and Krause, J.C.: Local magnetic properties and electronic structure of γ´-Fe4N. J. Magn. Magn. Mater. 138, 109114 (1994).CrossRefGoogle Scholar
Armitage, J.G.M., Graham, R.G., Lord, J.S., Riedi, P.C., Matar, S.F., and Demazeau, G.: Pressure dependence of magnetic properties of Fe4N and Mn4N. J. Magn. Magn. Mater. 104–107, 19351936 (1992).Google Scholar
Kong, Y., Zhou, R., and Fashen, L.: A linear muffin-tin orbital calculation of the volume dependence of local electronic and magnetic properties of γ′-Fe4N. J. Phys.: Condens. Matter 8, 38293834 (1996).Google Scholar
Sifkovits, M., Smolinski, H., Hellwig, S., and Weber, W.: Interplay of chemical bonding and magnetism in Fe4N, Fe3N and ζ-Fe2N. J. Magn. Magn. Mater. 204, 191198 (1999).Google Scholar
Kong, Y., Zhou, R., and Li, F.: Spin-polarized linear muffin-tin orbitals calculation of the interstitial-atom effect in gamma-Fe4Z (Z= H, C, N). Phys. Rev. B 54, 5460 (1996).Google Scholar
dos Santos, A.V., da Costa, M.I., and Kuhnen, C.A.: Electronic structure and magnetic properties of Fe4C. J. Magn. Magn. Mater. 166, 223230 (1997).Google Scholar
Krause, J.C., Paduani, C., and da Costa, M.I.: Cluster calculations of the electronic structure of Fe4C. Hyperfine Interact. 108, 465475 (1997).Google Scholar
Ishimatsu, N., Maruyama, H., Kawamura, N., Suzuki, M., Ohishi, Y., Ito, M., Nasu, S., Kawakami, T., and Shimomura, O.: Pressure-induced magnetic transition in Fe4N probed by Fe K-edge XMCD measurement. J. Phys. Soc. Jpn. 72, 23722376 (2003).Google Scholar
Ogura, M. and Akai, H.: Magnetic properties and electric field gradients of Fe4N and Fe4C. Hyperfine Interact. 158, 1923 (2004).Google Scholar
de Figueiredo, R.S. and Foct, J.: Mössbauer study of superstructures induced by mechanical alloying in nanocrystalline (MexFe1-x)4N nitrides. In Proceedings of ICAME-95, Vol. 50 (Italian Physical Society: Rimini, Italy, 1996); p. 509.Google Scholar
de Figueiredo, R.S., Kuhnen, C.A., and dos Santos, A.V.: Crystallographic, magnetic and electronic struture of iron-silver and iron-gold perovskite nitrides. J. Magn. Magn. Mater. 173, 141154 (1997).Google Scholar
Kuhnen, C.A., de Figueiredo, R.S., and dos Santos, A.V.: Mössbauer spectroscopy, crystallographic, magnetic and electronic structure of ZnFe3N and InFe3N. J. Magn. Magn. Mater. 219, 5868 (2000).Google Scholar
de Figueiredo, R.S., Foct, J., dos Santos, A.V., and Kuhnen, C.A.: Crystallographic and electronic structure of CuxFe4−xN. J. Alloys Compd. 315, 4250 (2001).Google Scholar
Foct, J., de Figueiredo, R.S., Richard, O., and Mormiroli, J.P.: Mechanical Alloying of Interstitial Solid Solutions and Compounds. Mater. Sci. Forum 225–227, 409416 (1996).CrossRefGoogle Scholar
dos Santos, A.V. and Kuhnen, C.A.: Electronic structure and magnetic properties of CoFe3N, CrFe3N and TiFe3N. J. Alloys Compd. 321, 6066 (2001).Google Scholar
Matar, S., Mohn, P., and Kübler, J.: Magnetovolume effects in PtFe3N. J. Magn. Magn. Mater. 104–107, 19271928 (1992).Google Scholar
Ma, X.G., Jiang, J.J., Liang, P., Wang, J., Ma, Q., and Zhang, Q.K.: Structural stability and magnetismo of γ′-Fe4N and CoFe3N compounds. J. Alloys Compd. 480, 475480 (2009).Google Scholar
Gil Rebaza, A.V., Desimoni, J., and Peltzer y Blancá, E.L.: Study on the oscillatory behaviour of the lattice parameter in ternary iron–nitrogen compounds. Phys. B 407, 32403243 (2012).Google Scholar
Hocine, K., Rabah, M., Rached, D., Djili, S., and Baltache, H.: Ab initio study of electronic structure and magnetic properties of MFe3N (M = Ru and Os). Comput. Mater. Sci. 65, 612 (2012).Google Scholar
Zhang, Y., Wang, Z., and Cao, J.: Predicting magnetostriction of MFe3N (M = Fe, Mn, Ir, Os, Pd, Rh) from ab initio calculations. Comput. Mater. Sci. 92, 464467 (2014).Google Scholar
Music, D. and Schneider, J.M.: Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88, 031914 (2006).Google Scholar
Zhao, E., Xiang, H., Meng, J., and Wu, Z.: First-principles investigation on the elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os). Chem. Phys. Lett. 449, 96100 (2007).Google Scholar
Yan, M.F., Wu, Y.Q., and Liu, R.L.: Plasticity and initio characterizations on Fe4N produced on the surface of nanocrystallized 18Ni-maraging steel plasma nitrided at lower temperature. Appl. Surf. Sci. 255, 89028906 (2009).Google Scholar
Timoshevskii, A.N. and Yablonovskii, S.O.: Ab-initio modeling of the short range order in Fe-N and Fe-C autenitic alloys. Funct. Mater. 18, 517522 (2011).Google Scholar
Lv, Z.Q., Gao, Y., Sun, S.H., Qv, M.G., Wang, Z.H., Shi, Z.P., and Fu, W.T.: Electronic, magnetic and elastic properties of γ-Fe4X (X = B/C/N) from density functional theory calculations. J. Magn. Magn. Mater. 333, 3945 (2013).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. B 77, 38653868 (1996).Google ScholarPubMed
White, J.A. and Bird, D.M.: Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Phys. Rev. B 50, 49544957 (1994).Google Scholar
Blaha, P., Schwarz, K., and Luitz, J.: Computer code WIEN97, Universitat Wien, Austria, 1997.Google Scholar
Peltzer y Blanca, E.L., Desimoni, J., and Christensen, N.E.: Electronic structure of FCC-FenX (X=C, N; n=4, 8) alloys. Phys. B 354, 341344 (2004).Google Scholar
Choo, W.K. and Kaplow, R.: Mössbauer measurements on the aging of iron-carbon martensite. Acta Metall. 21, 725732 (1973).Google Scholar
De Cristofaro, N. and Kaplow, R.: Interstitial atom configurations in stable and metastable Fe-N and Fe-C solid solutions. Metall. Trans. A 8, 3544 (1977).Google Scholar
Watson, R.E. and Freeman, A.J.: Origin of effective fields in magnetic materials. Phys. Rev. 123, 20272047 (1961).Google Scholar
Timoshevskii, A.N., Timoshevskii, V.A., and Yanchitsky, B.Z.: The influence of carbon and nitrogen on the electronic structure and hyperfine interactions in face-centred-cubic iron-based alloys. J. Phys.: Condens. Matter 13, 10511061 (2001).Google Scholar
Haglund, J., Fernández Guillermet, A., Grimvall, G., and Korling, M.: Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 1168511691 (1993).CrossRefGoogle ScholarPubMed
Duff, K.J.: Calibration of the isomer shift for 57Fe. Phys. Rev. B 9, 6672 (1974).Google Scholar
Yang, C.L, Abd-Elmeguid, M.M, Micklitz, H., Michels, G., Otto, J.W, Kong, Y., Xue, D.S., and Li, F.S.: Pressure effects on the electronic properties and the magnetic ground state of γ′-Fe4N. J. Magn. Magn. Mater. 151, L19L23 (1995).Google Scholar