Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T07:03:49.922Z Has data issue: false hasContentIssue false

3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A

Published online by Cambridge University Press:  04 September 2019

Congqiang Lou
Affiliation:
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161000, China
Tao Jing*
Affiliation:
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161000, China
Jingzhi Tian
Affiliation:
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161000, China
Yongjie Zheng*
Affiliation:
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161000, China
Jiaoxia Zhang*
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Mengyao Dong
Affiliation:
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
Chao Wang
Affiliation:
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province 161000, China
Chuanxin Hou
Affiliation:
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA; and School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Jincheng Fan
Affiliation:
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
Zhanhu Guo*
Affiliation:
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Three-dimensional graphene (3D-GN)/Cu/Fe3O4 composite support materials were synthesized by a modified chemical reduction method using graphene oxide precursor. A 3D-GN/Cu/Fe3O4 biosensor was prepared by coating the electrode with laccase. The electrochemical properties of the biosensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry using potassium ferricyanide, phosphate-buffered saline (PBS) solution, and bisphenol A (BPA) solution. The current response of 3D-GN/Cu/Fe3O4 biosensors presents a remarkable sensitivity based on CV. The linear range of BPA is 7.2–18 μM using differential pulse voltammetry in PBS solution (pH = 4.0). A linear fitting equation of the laccase biosensor was observed for the current response as a function of BPA concentration. The detection limit was decreased to 1.7 μM. The detection approach herein turns out to be highly sensitive, has a wide linear range, and exhibits excellent stability.

Type
Article
Copyright
Copyright © The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ma, L., Zhu, Y., Wang, M., Yang, X., Song, G., and Huang, Y.: Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos. Sci. Technol. 170, 148 (2019).CrossRefGoogle Scholar
Ma, L., Li, N., Wu, G., Song, G., Li, X., Han, P., Wang, G., and Huang, Y.: Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl. Surf. Sci. 433, 560 (2018).CrossRefGoogle Scholar
Ma, L., Zhu, Y., Feng, P., Song, G., Huang, Y., Liu, H., Zhang, J., Fan, J., Hou, H., and Guo, Z.: Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites, Part B 176, 107078 (2019).CrossRefGoogle Scholar
Zhu, G., Cui, X., Zhang, Y., Chen, S., Dong, M., Liu, H., Shao, Q., Ding, T., Wu, S., and Guo, Z.: Poly(vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer 172, 415 (2019).CrossRefGoogle Scholar
Yang, J., Yang, W., Wang, X., Dong, M., Liu, H., Wujcik, E.K., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol. Chem. Phys. 220, 1800567 (2019).CrossRefGoogle Scholar
Lin, Z., Lin, B., Wang, Z., Chen, S., Wang, C., Dong, M., Gao, Q., Shao, Q., Ding, T., Liu, H., Wu, S., and Guo, Z.: Facile preparation of 1T/2H–Mo(S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem 11, 2217 (2019).CrossRefGoogle Scholar
Gu, H., Xu, X., Dong, M., Xie, P., Shao, Q., Fan, R., Liu, C., Wu, S., Wei, R., and Guo, Z.: Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147, 550 (2019).CrossRefGoogle Scholar
Shi, Z.J., Xu, G.F., Deng, J., Dong, M.Y., Murugadoss, V., Liu, C.T., Shao, Q., Wu, S.D., and Guo, Z.H.: Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 12, 235 (2019).CrossRefGoogle Scholar
Xu, G., Shi, Z., Zhao, Y., Deng, J., Dong, M., Liu, C., Murugadoss, V., Mai, X., and Guo, Z.: Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int. J. Biol. Macromol. 126, 376 (2019).CrossRefGoogle Scholar
Shi, Z., Jia, C., Wang, D., Deng, J., Xu, G., Wu, C., Dong, M., and Guo, Z.: Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. Int. J. Biol. Macromol. 133, 964 (2019).CrossRefGoogle ScholarPubMed
Zhao, Z., Bai, P., Misra, R.D.K., Dong, M., Guan, R., Li, Y., Zhang, J., Tan, L., Gao, J., Ding, T., Du, W., and Guo, Z.: AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. J. Alloys Compd. 792, 203 (2019).CrossRefGoogle Scholar
Gong, X., Liu, Y., Wang, Y., Xie, Z., Dong, Q., Dong, M., Liu, H., Shao, Q., Lu, N., Murugadoss, V., Ding, T., and Guo, Z.: Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. Polymer 168, 131 (2019).CrossRefGoogle Scholar
Chen, Q., Yin, Q., Dong, A., Gao, Y., Qian, Y., Wang, D., Dong, M., Shao, Q., Liu, H., Han, B-H., Ding, T., Guo, Z., and Wang, N.: Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis. Polymer 169, 255 (2019).CrossRefGoogle Scholar
Luo, X.L., Pei, F., Wang, W., Qian, H.M., Miao, K.K., Pan, Z., Chen, Y.S., and Feng, G.D.: Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization. Microporous Mesoporous Mater. 262, 148 (2018).CrossRefGoogle Scholar
Liu, Y.C., Shi, M.J., Yan, C., Zhuo, Q.Q., Wu, H.Z., Wang, L., Liu, H., and Guo, Z.H.: Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. J. Mater. Sci.: Mater. Electron. 30, 6583 (2019).Google Scholar
Yang, L., Shi, M., Jiang, J., Liu, Y., Yan, C., Liu, H., and Guo, Z.: Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater. Lett. 244, 27 (2019).CrossRefGoogle Scholar
Sheng, Y.Y., Yang, J., Wang, F., Liu, L.C., Liu, H., Yan, C., and Guo, Z.H.: Sol–gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154 (2019).CrossRefGoogle Scholar
Luo, X.L., Pan, Z., Pei, F., Jin, Z.P., Miao, K.K., Yang, P.F., Qian, H.M., Chen, Q., and Feng, G.D.: In situ growth of hollow Cu2O spheres using anionic vesicles as soft templates. J. Ind. Eng. Chem. 59, 410 (2018).CrossRefGoogle Scholar
Shen, C., Liu, X., Cao, H., Zhou, Y., Liu, J., Tang, J., Guo, X., Huang, H., and Chen, X.: Brain-Like navigation scheme based on MEMS-INS and place recognition. Appl. Sci. 9, 1708 (2019).CrossRefGoogle Scholar
Zhao, Z.Y., Guan, R.G., Zhang, J.H., Zhao, Z.Y., and Bai, P.K.: Effects of process parameters of semisolid stirring on microstructure of Mg–3Sn–1Mn–3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. 30, 66 (2017).CrossRefGoogle Scholar
Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H., and Liu, T.: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735 (2016).CrossRefGoogle Scholar
Liu, M.K., Li, B.M., Zhou, H., Chen, C., Liu, Y.Q., and Liu, T.X.: Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel-polyaniline hybrid with vertically aligned pores. Chem. Commun. 53, 2810 (2017).CrossRefGoogle ScholarPubMed
Liang, T., Qi, L., Ma, Z., Xiao, Z., Wang, Y., Liu, H., Zhang, J., Guo, Z., Liu, C., Xie, W., Ding, T., and Lu, N.: Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. Composites, Part B 166, 428 (2019).CrossRefGoogle Scholar
Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V., Zhang, J., Wang, Y., and Guo, Z.: Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites, Part B 167, 396 (2019).CrossRefGoogle Scholar
Ren, J., Hou, Q., Chen, H., Liu, T., He, H., Wang, J., Shao, Q., Dong, M., Wu, S., Wang, N., Lin, J., Luo, Q., and Guo, Z.: Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem 6, 3167 (2019).CrossRefGoogle Scholar
Lin, B., Lin, Z., Chen, S., Yu, M., Li, W., Gao, Q., Dong, M., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279 (2019).CrossRefGoogle ScholarPubMed
Le, K., Wang, Z., Wang, F., Wang, Q., Shao, Q., Murugadoss, V., Wu, S., Liu, W., Liu, J., Gao, Q., and Guo, Z.: Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193 (2019).CrossRefGoogle ScholarPubMed
Ma, Y., Hou, C., Zhang, H., Zhang, Q., Liu, H., Wu, S., and Guo, Z.: Three-dimensional core–shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114 (2019).CrossRefGoogle Scholar
Li, R., Zhu, X., Fu, Q., Liang, G., Chen, Y., Luo, L., Dong, M., Shao, Q., Lin, C., Wei, R., and Guo, Z.: Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 2493 (2019).CrossRefGoogle ScholarPubMed
Idrees, M., Batool, S., Kong, J., Zhuang, Q., Liu, H., Shao, Q., Lu, N., Feng, Y., Wujcik, E.K., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Polyborosilazane derived ceramics—Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925 (2019).CrossRefGoogle Scholar
Yuan, Y., Yu, Q., Wen, J., Li, C., Guo, Z., Wang, X., and Wang, N.: Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem., Int. Ed. 58, 11785 (2019).CrossRefGoogle ScholarPubMed
Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., and Guo, Z.: Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J. Mater. Chem. A. 7, 16902 (2019).CrossRefGoogle Scholar
Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., and Cao, D.: Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 194, 462 (2018).CrossRefGoogle Scholar
Zhao, Z., An, H., Lin, J., Feng, M., Murugadoss, V., Ding, T., Liu, H., Shao, Q., Mai, X., Wang, N., Gu, H., Angaiah, S., and Guo, Z.: Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873 (2019).CrossRefGoogle ScholarPubMed
Qian, Y.X., Yuan, Y.H., Wang, H.L., Liu, H., Zhang, J.X., Shi, S., Guo, Z.H., and Wang, N.: Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J. Mater. Chem. A 6, 24676 (2018).CrossRefGoogle Scholar
Guo, Z., Yang, P., Yang, L., Luo, Q., Wang, J., hao, Y., Yang, R., Lai, X., Zhao, X., Gao, Q., Shao, Q., Wu, S., Ding, T., fu, Q., Mai, X., Dong, M., and Lin, J.: Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for an effective hydrogen generation. Chem. Commun. 55, 9011 (2019).Google Scholar
Xu, S., Lv, Y., Zeng, X., and Cao, D.: ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chem. Eng. J. 323, 502 (2017).CrossRefGoogle Scholar
Sun, H., Yang, Z., Pu, Y., Dou, W., Wang, C., Wang, W., Hao, X., Chen, S., Shao, Q., Dong, M., Wu, S., Ding, T., and Guo, Z.: Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J. Colloid Interface Sci. 547, 40 (2019).CrossRefGoogle ScholarPubMed
Shi, Z., Wu, C., Gu, Y., Liang, Y., Xu, G., Liu, H., Zhang, J., Hou, H., Zhang, J., and Guo, Z.: Preparation and characterization of mesoporous CuO/ZSM-5 catalysts for automotive exhaust purification. Sci. Adv. Mater. 11, 1198 (2019).CrossRefGoogle Scholar
Wang, Y.Z.M., Jing, T., Tian, J., Chen, P., Dong, M., Wang, C., Yan, C., Liu, C., Ding, T., Xie, W., and Guo, Z.: Component determination and their formation of PM2.5. Sci. Adv. Mater. 11, 756 (2019).CrossRefGoogle Scholar
Niu, X., Yang, W., Wang, G., Ren, J., Guo, H., and Gao, J.: A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim. Acta 98, 167 (2013).CrossRefGoogle Scholar
Lin, C-L., Zhang, J-X., and Lan, L.: Analyses of rural drinking water resources quality in the north area of Shaanxi. Desalin. Water Treat. 54, 637 (2015).CrossRefGoogle Scholar
Lin, C., Fan, B., Zhang, J.X., Yang, X., and Zhang, H.: Study on lead ion wastewater treatment of self-assembled film. Desalin. Water Treat. 57, 21627 (2016).CrossRefGoogle Scholar
Shi, Z., Wu, C., Wu, Y., Liu, H., Xu, G., Deng, J., Gu, H.L.H., Zhang, J., Umar, A., Ma, Y., and Guo, Z.: Optimization of epoxypinane synthesis by silicotungstic acid supported on SBA-15 catalyst using response surface methodology. Sci. Adv. Mater. 11, 699 (2019).CrossRefGoogle Scholar
Wang, C., Lan, F., He, Z., Xie, X., Zhao, Y., Hou, H., Guo, L., Murugadoss, V., Liu, H., Shao, Q., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Iridium-based catalysts for solid polymer electrolyte electrocatalytic water splitting. ChemSusChem 12, 1576 (2019).CrossRefGoogle ScholarPubMed
Andreescu, S. and Sadik, O.A.: Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Anal. Chem. 76, 552 (2004).CrossRefGoogle Scholar
Yu, C.M., Gou, L.L., Zhou, X.H., Bao, N., and Gu, H.Y.: Chitosan–Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochim. Acta 56, 9056 (2011).CrossRefGoogle Scholar
Chen, S., Chen, J., and Zhu, X.: Solid phase extraction of bisphenol A using magnetic core–shell (Fe3O4@SiO2) nanoparticles coated with an ionic liquid, and its quantitation by HPLC. Microchim. Acta 183, 1315 (2016).CrossRefGoogle Scholar
Sun, Y., Zhang, W-Y., Xing, J., and Wang, C-M.: Solid phase microfibers based on modified single-walled carbon nanotubes for simultaneous determination of alkylphenols and bisphenol A in purified water samples. Chin. J. Anal. Chem. 39, 1432 (2011).Google Scholar
Du, L., Zhang, C., Wang, L., Liu, G., Zhang, Y., and Wang, S.: Ultrasensitive time-resolved microplate fluorescence immunoassay for bisphenol A using a system composed on gold nanoparticles and a europium(III)-labeled streptavidin tracer. Microchim. Acta 182, 539 (2015).CrossRefGoogle Scholar
Lu, X., Li, Y., Tao, L., Song, D., Wang, Y., Li, Y., and Gao, F.: Amorphous metal boride as a novel platform for acetylcholinesterase biosensor development and detection of organophosphate pesticides. Nanotechnology 30, 055501 (2019).CrossRefGoogle ScholarPubMed
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y.: Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027 (2010).CrossRefGoogle Scholar
Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., and Dong, S.: Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosens. Bioelectron. 21, 2195 (2006).CrossRefGoogle ScholarPubMed
Luo, X.L., Morrin, A., Killard, A.J., and Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319 (2006).CrossRefGoogle Scholar
Wu, S., He, Q., Tan, C., Wang, Y., and Zhang, H.: Graphene-based electrochemical sensors. Small 9, 1160 (2013).CrossRefGoogle ScholarPubMed
Ge, S., Yan, M., Lu, J., Zhang, M., Yu, F., Yu, J., Song, X., and Yu, S.: Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens. Bioelectron. 31, 49 (2012).CrossRefGoogle ScholarPubMed
Ameen, S., Akhtar, M.S., and Shin, H.S.: Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sens. Actuators, B 173, 177 (2012).CrossRefGoogle Scholar
Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z.: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159 (2019).CrossRefGoogle ScholarPubMed
Schwierz, F.: Graphene transistors: Status, prospects, and problems. Proc. IEEE 101, 1567 (2013).CrossRefGoogle Scholar
Anonymous: The rise and rise of graphene. Nat. Nanotechnol. 5, 755 (2010).CrossRefGoogle Scholar
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).CrossRefGoogle ScholarPubMed
Hou, C., Tai, Z., Zhao, L., Zhai, Y., Hou, Y., Fan, Y., Dang, F., Wang, J., and Liu, H.: High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 6, 9723 (2018).CrossRefGoogle Scholar
Zhang, J., Zhang, Z., Jiao, Y., Yang, H., Li, Y., Zhang, J., and Gao, P.: The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99 (2019).CrossRefGoogle Scholar
Xia, J., Chen, F., Li, J., and Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009).CrossRefGoogle ScholarPubMed
Jiao, Y., Zhang, J., Liu, S., Liang, Y., Li, S., Zhou, H., and Zhang, J.: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 1706 (2018).CrossRefGoogle Scholar
Cheng, Z., Li, Q., Li, Z., Zhou, Q., and Fang, Y.: Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10, 1864 (2010).CrossRefGoogle ScholarPubMed
Zhang, J.X., Liang, Y.X., Wang, X., Zhou, H.J., Li, S.Y., Zhang, J., Feng, Y., Lu, N., Wang, Q., and Guo, Z.: Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv. Compos. Hybrid Mater. 1, 300 (2018).CrossRefGoogle Scholar
Sun, Y., Li, C., Xu, Y., Bai, H., Yao, Z., and Shi, G.: Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46, 4740 (2010).CrossRefGoogle ScholarPubMed
Chen, D., Zhang, H., Liu, Y., and Li, J.: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362 (2013).CrossRefGoogle Scholar
Li, Y., Jing, T., Xu, G., Tian, J., Dong, M., Shao, Q., Wang, B., Wang, Z., Zheng, Y., Yang, C., and Guo, Z.: 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13 (2018).CrossRefGoogle Scholar
He, Y., Chen, Q., Liu, H., Zhang, L., Wu, D., Lu, C., OuYang, W., Jiang, D., Wu, M., Zhang, J., Li, Y., Fan, J., Liu, C., and Guo, Z.: Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromol. Mater. Eng., 1900166 (2019).CrossRefGoogle Scholar
Huang, X., Yin, R., Qian, L., Zhao, W., Liu, H., Liu, C., Fan, J., Hou, H., and Guo, Z.: Processing conditions dependent tunable negative permittivity in reduced graphene oxide-alumina nanocomposites. Ceram. Int. 45, 11784 (2019).CrossRefGoogle Scholar
Kirubasankar, B., Murugadoss, V., Lin, J., Ding, T., Dong, M., Liu, H., Zhang, J., Li, T., Wang, N., Guo, Z., and Angaiah, S.: In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414 (2018).CrossRefGoogle ScholarPubMed
Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y., Wu, L., Zhang, X., Li, P., Xu, J., Cheng, G., Sun, M., and Liu, L.: Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955 (2011).CrossRefGoogle ScholarPubMed
Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., and Cheng, M.M-C.: Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators, B 157, 310 (2011).CrossRefGoogle Scholar
Zhang, B. and Cui, T.: An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl. Phys. Lett. 98, 073116 (2011).CrossRefGoogle Scholar
Kulkarni, G.S., Reddy, K., Zhong, Z., and Fan, X.: Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 5, 4376 (2014).CrossRefGoogle ScholarPubMed
Choi, H., Choi, J.S., Kim, J-S., Choe, J-H., Chung, K.H., Shin, J-W., Kim, J.T., Youn, D-H., Kim, K-C., Lee, J-I., Choi, S-Y., Kim, P., Choi, C-G., and Yu, Y-J.: Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685 (2014).CrossRefGoogle ScholarPubMed
Jiang, D., Wang, Y., Li, B., Sun, C., Wu, Z., Yan, H., Xing, L., Qi, S., Li, Y., Liu, H., Xie, W., Wang, X., Ding, T., and Guo, Z.: Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol. Mater. Eng., 304, 1900074 (2019).CrossRefGoogle Scholar
Li, Y., Zhang, T., Jiang, B., Zhao, L., Liu, H., Zhang, J., Fan, J., Guo, Z., and Huang, Y.: Interfacially reinforced carbon fiber silicone resin via constructing functional nano-structural silver. Compos. Sci. Technol. 181, 107689 (2019).CrossRefGoogle Scholar
Zhang, S., Liu, H., Yang, S., Shi, X., Zhang, D., Shan, C., Mi, L., Liu, C., Shen, C., and Guo, Z.: Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11, 10922 (2019).CrossRefGoogle ScholarPubMed
Wang, C., Zhao, M., Li, J., Yu, J., Sun, S., Ge, S., Guo, X., Xie, F., Jiang, B., Wujcik, E.K., Huang, Y., Wang, N., and Guo, Z.: Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263 (2017).CrossRefGoogle Scholar
Guo, Y., Sun, Y., Wang, Y.X., He, H., and Zhu, Y.H.: Thiol- and alkyne-functionalized copper nanoparticles as electrocatalysts for bisphenol A (BPA) oxidation. J. Solid State Electrochem. 23, 91 (2019).CrossRefGoogle Scholar
Wang, X., Lu, X.B., Wu, L.D., and Chen, J.P.: 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens. Bioelectron. 65, 295 (2015).CrossRefGoogle Scholar
Zhu, L., Luo, L., and Wang, Z.: DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens. Bioelectron. 35, 507 (2012).CrossRefGoogle ScholarPubMed
Portaccio, M., Di Tuoro, D., Arduini, F., Moscone, D., Cammarota, M., Mita, D.G., and Lepore, M.: Laccase biosensor based on screen-printed electrode modified with thionine-carbon black nanocomposite, for bisphenol A detection. Electrochim. Acta 109, 340 (2013).CrossRefGoogle Scholar
Dempsey, E., Diamond, D., and Collier, A.: Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens. Bioelectron. 20, 367 (2004).CrossRefGoogle ScholarPubMed
Zheng, Y., Wang, D., Li, Z., Sun, X., Gao, T., and Zhou, G.: Laccase biosensor fabricated on flower-shaped yolk–shell SiO2 nanospheres for catechol detection. Colloids Surf., A 538, 202 (2018).CrossRefGoogle Scholar
Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., and Niu, L.: Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25, 12030 (2009).CrossRefGoogle ScholarPubMed
Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Subramania, A., and Guo, Z.: Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 59, 280 (2019).CrossRefGoogle Scholar
Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., and Guo, Z.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696 (2018).CrossRefGoogle Scholar
Wu, N., Xu, D., Wang, Z., Wang, F., Liu, J., Liu, W., Shao, Q., Liu, H., Gao, Q., and Guo, Z.: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433 (2019).CrossRefGoogle Scholar
Gu, H., Zhang, H., Ma, C., Sun, H., Liu, C., Dai, K., Zhang, J., Wei, R., Ding, T., and Guo, Z.: Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J. Mater. Chem. C 7, 2353 (2019).CrossRefGoogle Scholar
Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., Shan, C., Guo, J., Liu, C., Shen, C., Wang, X., Wang, N., Wang, Z., Wei, R., and Guo, Z.: Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 6, 12121 (2018).CrossRefGoogle Scholar
Li, Q., Liu, H., Zhang, S., Zhang, D., Liu, X., He, Y., Mi, L., Zhang, J., Liu, C., Shen, C., and Guo, Z.: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl. Mater. Interfaces 11, 21904 (2019).CrossRefGoogle ScholarPubMed