Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:30:07.388Z Has data issue: false hasContentIssue false

3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films

Published online by Cambridge University Press:  12 July 2016

Y.L. Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.L. Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Z.J. Hong
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
E.A. Eliseev
Affiliation:
Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
A.N. Morozovska
Affiliation:
Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
Y.J. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.B. Xu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
B. Wu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
L.Q. Chen
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
S.J. Pennycook
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
X.L. Ma*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Although the strong coupling of polarization to spontaneous strain in ferroelectrics would impart a flux-closure with severe disclination strains, recent studies have successfully stabilized such a domain via a nano-scaled multi-layer growth. Nonetheless, the detailed distributions of polarizations in three-dimensions (3D) and how the strains inside a flux closure affect the structures of domain walls are still less understood. Here we report a 3D polarization texture of a 4-fold flux closure domain identified in tensile strained ferroelectric PbTiO3/SrTiO3 multilayer films. Ferroelectric displacement analysis based on aberration-corrected scanning transmission electron microscopic imaging reveals highly inhomogeneous strains with strain gradient above 107/m. These giant disclination strains significantly broaden the 90° domain walls, while the flexoelectric coupling at 180° domain wall is less affected. The present observations are helpful for understanding the basics of topological dipole textures and indicate novel applications of ferroelectrics through engineering strains.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Rafal E. Dunin-Borkowski

References

REFERENCES

Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., and Ono, T.: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000).Google Scholar
Rößler, U.K., Bogdanov, A.N., and Pfleiderer, C.: Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797 (2006).Google Scholar
Uchida, M., Onose, Y., Matsui, Y., and Tokura, Y.: Real-space observation of helical spin order. Science 311, 359 (2006).Google Scholar
Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., and Tokura, Y.: Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010).Google Scholar
Romming, N., Hanneken, C., Menzel, M., Bickel, J.E., Wolter, B., von Bergmann, K., Kubetzka, A., and Wiesendanger, R.: Writing and deleting single magnetic skyrmions. Science 341, 636 (2013).CrossRefGoogle ScholarPubMed
Nagaosa, N. and Tokura, Y.: Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899 (2013).Google Scholar
Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).CrossRefGoogle Scholar
Cohen, R.E.: Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992).CrossRefGoogle Scholar
Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).Google Scholar
Spaldin, N.A.: Analogies and differences between ferroelectrics and ferromagnets. In Physics of Ferroelectrics a Modern Perspective. Topics in Applied Physics, Vol. 105, Rabe, K.M., Ahn, C.H. and Triscone, J-M. eds.; Springer-Verlag, Berlin Heidelberg, 2007; pp. 175218.Google Scholar
Naumov, I.I., Bellaiche, L., and Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).Google Scholar
Prosandeev, S. and Bellaiche, L.: Characteristics and signatures of dipole vortices in ferroelectric nanodots: First-principles-based simulations and analytical expressions. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 094102 (2007).Google Scholar
Aguado-Puente, P. and Junquera, J.: Ferromagnetic like closure domains in ferroelectric ultrathin films: First-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).Google Scholar
Chen, W.J., Zheng, Y., and Wang, B.: Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2(796), 00796 (2012).CrossRefGoogle ScholarPubMed
Zhou, Z.D. and Wu, D.Y.: Domain structures of ferroelectric films under different electrical boundary conditions. AIP Adv. 5, 107206 (2015).CrossRefGoogle Scholar
Kittel, C.: Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541 (1949).Google Scholar
Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., and Gregg, J.M.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).Google Scholar
McGilly, L.J., Schilling, A., and Gregg, J.M.: Domain bundle boundaries in single crystal BaTiO3 lamellae: Searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200 (2010).CrossRefGoogle ScholarPubMed
McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M.: Mesoscale flux-closure domain formation in single-crystal BaTiO3 . Nat. Commun. 2(404), 1413 (2011).Google Scholar
McGilly, L.J. and Gregg, J.M.: Polarization closure in PbZr(0.42)Ti(0.58)O3 nanodots. Nano Lett. 11, 4490 (2011).CrossRefGoogle ScholarPubMed
Chang, L-W., Nagarajan, V., Scott, J.F., and Gregg, J.M.: Self-similar nested flux closure structures in a tetragonal ferroelectric. Nano Lett. 13, 2553 (2013).CrossRefGoogle Scholar
Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420 (2011).CrossRefGoogle ScholarPubMed
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S-H., Eom, C-B., Schlom, D.G., Chen, L-Q., and Pan, X.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).Google Scholar
Tang, Y.L., Zhu, Y.L., Ma, X.L., Borisevich, A.Y., Morozovska, A.N., Eliseev, E.A., Wang, W.Y., Wang, Y.J., Xu, Y.B., Zhang, Z.D., and Pennycook, S.J.: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).Google Scholar
Yadav, A.K., Nelson, C.T., Hsu, S.L., Hong, Z., Clarkson, J.D., Schlepütz, C.M., Damodaran, A.R., Shafer, P., Arenholz, E., Dedon, L.R., Chen, D., Vishwanath, A., Minor, A.M., Chen, L.Q., Scott, J.F., Martin, L.W., and Ramesh, R.: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).Google Scholar
Catalan, G., Lubk, A., Vlooswijk, A.H.G., Snoeck, E., Magen, C., Janssens, A., Rispens, G., Rijnders, G., Blank, D.H.A., and Noheda, B.: Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963967 (2011).Google Scholar
Anthony, S.M. and Granick, S.: Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 81528160 (2009).Google Scholar
Jia, C-L., Nagarajan, V., He, J-Q., Houben, L., Zhao, T., Ramesh, R., Urban, K., and Waser, R.: Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64 (2007).Google Scholar
Li, Y.L., Hu, S.Y., Liu, Z.K., and Chen, L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395 (2002).Google Scholar
Chen, L.Q.: Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J. Am. Ceram. Soc. 91, 18351844 (2008).Google Scholar
Li, Y.L., Hu, S.Y., Liu, Z.K., and Chen, L.Q.: Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427429 (2002).Google Scholar
Haun, M.J.: Ph.D Thesis, The Pennsylvania State University, 1988.Google Scholar
Sheng, G., Li, Y.L., Zhang, J.X., Choudhury, S., Jia, Q.X., Gopalan, V., Schlom, D.G., Liu, Z.K., and Chen, L.Q.: A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96, 232902 (2010).Google Scholar
Wang, J.J., Ma, X.Q., Li, Q., Britson, J., and Chen, L.Q.: Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61, 75917603 (2013).Google Scholar
Chen, L.Q. and Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147158 (1998).Google Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146 (1998).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., and Ma, X.L.: On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160, 5763 (2016).Google Scholar
Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946).Google Scholar
Srolovitz, D.J. and Scott, J.F.: Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 34, 1815 (1986).Google Scholar
Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Ramesh, R., and Kalinin, S.V.: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868875 (2009).Google Scholar
Slutsker, J., Artemev, A., and Roytburd, A.: Phase-field modeling of domain structure of confined nanoferroelectrics. Phys. Rev. Lett. 100, 087602 (2008).Google Scholar
Lee, D., Lu, H., Gu, Y., Choi, S-Y., Li, S-D., Ryu, S., Paudel, T.R., Song, K., Mikheev, E., Lee, S., Stemmer, S., Tenne, D.A., Oh, S.H., Tsymbal, E.Y., Wu, X., Chen, L-Q., Gruverman, A., and Eom, C.B.: Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314 (2015).Google Scholar
Tagantsev, A.K., Cross, L.E., and Fousek, J.: Chapter 6. In Domains in Ferroic Crystals and Thin Films. (Springer, New York, 2010); pp. 300304.Google Scholar
Yudin, P.V., Tagantsev, A.K., Eliseev, E.A., Morozovska, A.N., and Setter, N.: Bichiral structure of ferroelectric domain walls driven by flexoelectricity. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 134102 (2012).Google Scholar
Eliseev, E.A., Yudin, P.V., Kalinin, S.V., Setter, N., Tagantsev, A.K., and Morozovska, A.N.: Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 87, 054111 (2013).Google Scholar
Meyer, B. and Vanderbilt, D.: Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104111 (2002).Google Scholar
Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1985).Google Scholar
Roitburd, A.L.: Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329 (1976).Google Scholar
Tagantsev, A.K., Gerra, G., and Setter, N.: Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 174111 (2008).Google Scholar
Chandra, P. and Littelwood, P.B.: A landau primer for ferroelectrics. In Physics of Ferroelectrics a Modern Perspective, Topics Applied Physics, Vol. 105, Rabe, K.M., Ahn, C.H. and Triscone, J-M. eds.; Springer-Verlag, Berlin Heidelberg, 2007; pp. 69116.Google Scholar
Chopra, H.D. and Wuttig, M.: Non-Joulian magnetostriction. Nature 521, 340 (2015).Google Scholar
McQuaid, R.G., Gruverman, A., Scott, J.F., and Gregg, J.M.: Exploring vertex interactions in ferroelectric flux-closure domains. Nano Lett. 14, 42304237 (2014).CrossRefGoogle ScholarPubMed