Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:55:49.999Z Has data issue: false hasContentIssue false

A 133Cs magic angle spinning nuclear magnetic resonance study of cesium environments in barium hollandites and Synroc

Published online by Cambridge University Press:  31 January 2011

J. S. Hartman
Affiliation:
Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
E. R. Vance
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234, Australia
W. P. Power
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
J. V. Hanna
Affiliation:
CSIRO North Ryde NMR Facility, P.O. Box 52, North Ryde, New South Wales 2113, Australia
Get access

Extract

Barium aluminum hollandite is a major phase in Synroc, a ceramic designed for the immobilization of high-level waste (HLW) from nuclear fuel reprocessing. Radioactive cesium substitutes into the channel sites, and such hollandites give 133Cs MAS nuclear magnetic resonance (NMR) spectra consisting of a single peak at 211 ppm in the absence of paramagnetic ions. However, the peak shifts to 640 ± 30 ppm and becomes extremely broad when Ti3+ replaces Al3+ in the channel walls of the hollandite structure, apparently because of Fermi contact interaction between the Cs nucleus and the unpaired electron of Ti3+. 133Cs MAS NMR of Synroc and hollandites is very sensitive to the presence of water-soluble CsAlTiO4 which would compromise the aqueous durability of Synroc. 133Cs MAS NMR spectra of Synroc-C, hot-pressed in metal bellows at temperatures as high as 1325 °C, do not indicate significant formation of CsAlTiO4. Synroc samples loaded with Cs and Sr only were shown by MAS NMR as well as electron microscopic techniques to be capable of incorporating nearly 10 wt.% Cs before CsAlTiO4 is formed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., and Major, A., Nature 278, 219 (1979).CrossRefGoogle Scholar
2.Ringwood, A. E., Kesson, S. E., Reeve, K. D., Woolfrey, J. L., and Ramm, E. J., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (Elsevier, Amsterdam, 1988), pp. 233334.Google Scholar
3.Solomah, A. G., Hare, T. M., and Palmour, H., Nucl. Technol. 49, 183 (1980).CrossRefGoogle Scholar
4.Mendel, J. E., Ross, W. A., Roberts, F. P., Katayama, Y., Westsik, T., Turcotte, R., Wald, T., and Bradley, D., Annual Report on the Characteristics of High-Level Waste Glasses, Battelle Pacific Northwest Laboratory, Richland, WA, BNWL-2252 (1977).CrossRefGoogle Scholar
5.Cheary, R. W., Acta Crystallogr. B42, 229 (1986);CrossRefGoogle Scholar
Cheary, R. W. and Squadrito, R. M., Acta Crystallogr. B45, 205 (1989).CrossRefGoogle Scholar
6.Cooper, J. A., Cousens, D. R., Lewis, R. A., Myhra, S., Segall, R. L., Smart, R. St. C., Turner, P. S., and White, T. J., J. Am. Ceram. Soc. 69, 347 (1986).CrossRefGoogle Scholar
7.Kesson, S. E. and White, T. J., Proc. Roy. Soc. London, Ser. A 405, 73 (1986).Google Scholar
8.Akitt, J. W., The Alkali and Alkaline Earth Metals, Chapter 7 in Multinuclear NMR, edited by Mason, J. (Plenum Press, New York and London, 1987).CrossRefGoogle Scholar
9.Fyfe, C. A., Solid State NMR for Chemists (CFC Press, Guelph, ON, Canada, 1983).Google Scholar
10.Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites (John Wiley & Sons, Chichester, 1987).Google Scholar
11.Blumich, B., Adv. Mater. 3, 237 (1991).CrossRefGoogle Scholar
12.Eckert, H., Progr. NMR Spect. 24, 159 (1992).CrossRefGoogle Scholar
13.Power, W. P., Mooibroek, S., Wasylishen, R. E., and Cameron, T. S., J. Phys. Chem. 98, 1552 (1994), and references therein. See especially Figure 7 which summarizes 133Cs chemical shift ranges.CrossRefGoogle Scholar
14.Weiss, C. A. Jr., Kirkpatrick, R. J., and Altaner, S. P., Geochim. Cosmochim. Acta 54, 1655 (1990).CrossRefGoogle Scholar
15.Weiss, C. A. Jr., Kirkpatrick, R. J., and Altaner, S. P., Am. Mineral. 75, 970 (1990).Google Scholar
16.Sherriff, B. L., Grundy, H. D., Hartman, J. S., Hawthorne, F. C., and Cerny, P., Can. Mineral. 29, 271 (1991).Google Scholar
17.Teertstra, D. K., Sherriff, B. L., Xu, Z., and Cerny, P., Can. Mineral. 32, 69 (1994).Google Scholar
18.Kim, Y., Kirkpatrick, R. J., and Cygan, R. T., Geochim. Cosmochim. Acta 60, 4059 (1996).CrossRefGoogle Scholar
19.Wagner, M. J., Huang, R. H., Eglin, J. L., and Dye, J. L., Nature 368, 726 (1994).CrossRefGoogle Scholar
20.Dawes, S. B., Eglin, J. L., Moeggenborg, K. J., Kim, J., and Dye, J. L., J. Am. Chem. Soc. 113, 1605 (1991).CrossRefGoogle Scholar
21.Hartman, J. S. and Vance, E. R., J. Mater. Res. 9, 1714 (1994).CrossRefGoogle Scholar
22.Engelhardt, G., Feuerstein, M., Sieger, P., Markgraber, D., Stucky, G., and Srdanov, V., Chem. Commun., 729 (1996).Google Scholar
23.Morgan, K. R., Collier, S., Burns, G., and Ooi, K., J. Chem. Soc., Chem. Commun., 1719 (1994).CrossRefGoogle Scholar
24.Cheetham, A. K., Dobson, C. M., Grey, C. P., and Jakeman, R. J. B., Nature 328, 706 (1987).CrossRefGoogle Scholar
25.Grey, C. P., Dobson, C. M., Cheetham, A. K., and Jakeman, R. J. B., J. Am. Chem. Soc. 111, 505 (1989).CrossRefGoogle Scholar
26.Nayeem, A. and Yesinowski, J. P., J. Chem. Phys. 89, 4600 (1988).CrossRefGoogle Scholar
27.Hart, K. P., Vance, E. R., Day, R. A., and Begg, B. D., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996), pp. 281287.Google Scholar