Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T07:14:24.776Z Has data issue: false hasContentIssue false

(200)-predominant Growth of Radio-frequency Sputtered SrBi2Ta2O9 Thin Films

Published online by Cambridge University Press:  31 January 2011

Si-Hyung Lee
Affiliation:
Thin Film Technology Research Center, KIST, Seoul 136–791,Korea
Jeon-Kook Lee*
Affiliation:
Thin Film Technology Research Center, KIST, Seoul 136–791,Korea
Ki Hyun Yoon
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120–749, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

SrBi2Ta2O9 (SBT) thin films were prepared by the radio-frequency (rf ) magnetron sputtering method on Pt/Ti/SiO2/Si substrates. The composition and orientation of SBT thin films were changed by the control of sputtering parameters such as pressure and rf power. As the sputtering pressure increased from 2.5 to 300 mtorr, the film was changed from Sr- and Bi-deficient SBT film to stoichiometric film. The SBT thin films with stoichiometric composition showed good electrical properties. As the rf power increased from 25 to 40 W, the Sr content decreased. However, the Bi content was maximized in the power of 30 W, where the (200)-predominant SBT thin films were fabricated. In lower power of 25 W, typical polycrystalline SBT films were obtained. The Sr and Bi contents in both films were not deficient. However, at the higher power of 35 and 40 W, the secondary phase appeared due to the Sr deficiency. The Bi content of (200)-predominant SBT film was higher than that of polycrystalline films. The degree of the (200) orientation depended on the magnitude of excess Bi content. It is also suggested that the (200)-predominant SBT films were formed by the decomposition of SBT phase to the Bi and Sr atoms caused by rf power control and the lower atomic migration energy along the a axis.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arauzo, C.A. Paz de, Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature (London) 374, 627 (1995).Google Scholar
2.Subbarao, E.C., J. Phys. Chem. Solids 23, 665 (1962).CrossRefGoogle Scholar
3.Desu, S.B., Vijay, D.P., Zhang, X., and He, B., Appl. Phys. Lett. 69, 1719 (1996).CrossRefGoogle Scholar
4.Pignolet, A., Schafer, C., Satyalakshmi, K.M., Harnagea, C., Hesse, D., and Gosele, U., Appl. Phys. A 70, 283 (2000).CrossRefGoogle Scholar
5.Joshi, P.C., Ryu, S.O., Zhang, X., and Desu, S.B., Appl. Phys. Lett. 70, 1080 (1997).CrossRefGoogle Scholar
6.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett . 66, 221 (1995).CrossRefGoogle Scholar
7.Lee, J.S., Kim, H.H., Kwon, H.J., and Jeong, Y.W., Appl. Phys. Lett. 73, 166 (1998).CrossRefGoogle Scholar
8.Lettieri, J., Jia, Y., Urbanik, M., Weber, C.I., Maria, J-P., Schlom, D.G., Li, H., Ramesh, R., Uecker, R., and Reiche, P., Appl. Phys. Lett. 73, 2923 (1998).CrossRefGoogle Scholar
9.Ishikawa, K. and Funakubo, H., Appl. Phys. Lett. 75, 1970 (1999).CrossRefGoogle Scholar
10.Moon, S.E., Song, T.K., Back, S.B., Kwun, S-I, Yoon, J-G., and Lee, J.S., Appl. Phys. Lett. 75, 2827 (1999).CrossRefGoogle Scholar
11.Garg, A. and Barber, Z., presentation P1.4.3, 13th ISIF, Colorado Springs, CO, March 11–14, 2001.Google Scholar
12.Pignolet, A., Satyalakshmi, K.M., Alexe, M., Zakharov, D.N., Harnagea, C., Senz, S., Hesse, D., and Gosele, U., Integrated Ferroelectrics 26, 21 (1999).CrossRefGoogle Scholar
13.Lee, H.N., Zakharov, D.N., Senz, S., Pignolet, A., and Hesse, D., Appl. Phys. Lett. 79, 2961 (2001).CrossRefGoogle Scholar
14.Hu, G.D., Xu, J.B., Wilson, I.H., Cheung, W.Y., Ke, N., and Wong, S.P., Appl. Phys. Lett. 74, 3711 (1999).CrossRefGoogle Scholar
15.Hu, G.D., Wilson, I.H., Xu, J.B., Li, C.P., and Wong, S.P., Appl. Phys. Lett. 76, 1758 (2000).CrossRefGoogle Scholar
16.Hu, G.D., Wilson, I.H., Xu, J.B., Cheung, W.Y., Wong, S.P., and Hong, H.K., Appl. Phys. Lett. 74, 1221 (1999).CrossRefGoogle Scholar
17.Chen, T.C., Li, T., Zhang, X., and Desu, S.B., J. Mater. Res. 12, 1569 (1997).CrossRefGoogle Scholar
18.Watanabe, K., Tanaka, M., Sumitomo, E., Katori, K., Yagi, H., and Scott, J.F., Appl. Phys. Lett. 73, 126 (1998).CrossRefGoogle Scholar
19.Hase, T., Noguchi, T., Amanuma, K., and Miyasaka, Y., Integrated Ferroelectrics 15, 127 (1997).CrossRefGoogle Scholar
20.Bae, C., Lee, J-K., Lee, S-H., and Jung, H-J., J. Vac. Sci. Technol A 17, 2957 (1999).CrossRefGoogle Scholar
21.Hayashi, T., Hara, T., and Takahashi, H., Jpn. J. Appl. Phys. 36, 5900 (1997).CrossRefGoogle Scholar
22.Cho, K-J., Lee, J-K., Jung, H-J., and Park, J-W., J. Vac. Sci. Technol A 16, 1258 (1998).CrossRefGoogle Scholar
23.Klee, M. and Mackens, U., Integrated Ferroelectrics 12, 11 (1996).CrossRefGoogle Scholar
24.Arlt, G., Proc. ISIF 92, 645 (1992).Google Scholar
25.Dimos, D., Al-Shareef, H.A., Warren, W.L., and Tuttle, B.A., J. Appl. Phys. 80, 1682 (1996).CrossRefGoogle Scholar
26.Ushida, T., Higa, H., Higashiyama, K., and Hirabayashi, L., J. Mater. Res. 9, 1067 (1994).CrossRefGoogle Scholar
27.Gutleben, C.D., in Ferroelectric Thin Films V, edited by Desu, S.B., Ramesh, R., Tuttle, B.A., Jones, R.E., and Yoo, I.K. (Mater. Res. Soc. Proc. 433, Pittsburgh, PA, 1996), p. 109.Google Scholar
28.Kerrec, O., Devilliers, D., Groult, H., and Marcus, P., Mater. Sci. Eng. B55, 134 (1998).CrossRefGoogle Scholar