Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T08:49:08.609Z Has data issue: false hasContentIssue false

1300 K compressive properties of a reaction milled NiAl–AlN composite

Published online by Cambridge University Press:  31 January 2011

J. Daniel Whittenberger
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
Eduard Arzt
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Germany
Michael J. Luton
Affiliation:
Exxon Research and Engineering, Annandale, New Jersey 08801
Get access

Abstract

Cryomilling (high intensity mechanical ball milling in a liquid nitrogen bath) of the B2 crystal structure nickel aluminide leads to a NiAl composite containing about 10 vol.% of AlN particles. This is the result of a reaction milling process, where nitrogen incorporated into the matrix during cryomilling reacts with Al during subsequent thermomechanical processing to form the composite. Compressive testing at 1300 K of such materials densified by 1505 K extrusion or isostatic pressing at 1323 K or 1623 K indicated that strength at relatively fast strain rates (>10−7 s−1) is slightly dependent on the method of consolidation. At slower rates, however, no clear dependency on densification technique appears to exist, and four different consolidation methods possessed similar creep strengths. In all cases deformation at 1300 K occurred by two distinct mechanisms: at high strain rates the stress exponent is greater than 11 while at slower rates (<10−7 s−1) a much lower stress exponent (∼6) was found. Comparison of density compensated creep strengths reveals that the properties of NiAl–AlN are similar to those of the single crystal Ni-base superalloy NASAIR 100.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Whittenberger, J. D., J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
2Whittenberger, J. D., J. Mater. Sci. 23, 235 (1988).CrossRefGoogle Scholar
3Polvani, R. S., Tzeng, Wen-Shian, and Strutt, P. R., Metall. Trans. A 7A, 33 (1976).CrossRefGoogle Scholar
4Vedula, K., Pathare, V., Aslandis, I., and Titran, R. H., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), pp. 411421.Google Scholar
5Pathare, V. M., Ph.D. Thesis entitled “Processing, Physical Metallurgy and Creep of NiAl + Ta and NiAl + Nb Alloys,” Case Western Reserve University, 1987 (also available as NASA CR-182113, 1988).Google Scholar
6Whittenberger, J. Daniel, Viswanadham, R. K., Mannan, S. K., and Kumar, K. S., J. Mater. Res. 4, 1164 (1989).CrossRefGoogle Scholar
7Whittenberger, J. Daniel, Nathal, M. V., Raj, S. V., and Pathare, V. M., “Slow Strain Rate 1200–1400 K Compressive Properties of NiAl-lHf” to be submitted to Mater. Lett.Google Scholar
8Whittenberger, J. Daniel, Westfall, L. J., and Nathal, M. V., Scripta Metall. 23, 2127 (1989).CrossRefGoogle Scholar
9Jha, S. C., Ray, R., and Whittenberger, J. Daniel, Mater. Sci. Eng. A119, 103 (1989).CrossRefGoogle Scholar
10Whittenberger, J. Daniel, Viswanadham, R. K., Mannan, S. K., and Sprissler, B., J. Mater. Sci. 35, 35 (1990).CrossRefGoogle Scholar
11Whittenberger, J. Daniel, Kumar, K. S., and Mannan, S. K., “1200 and 1300 K slow plastic compression properties of Ni-50Al composites,” accepted by High Temperature Technology.Google Scholar
12Noebe, R. D., Bowman, R. R., and Eldridge, J. I., in Intermetallic Matrix Composites, edited by Anton, D. L., McMeeking, R., Miracle, D., and Martin, P. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 323332.Google Scholar
13Whittenberger, J. Daniel, Arzt, Eduard, and Luton, Michael J., J. Mater. Res. 5, 271 (1990).CrossRefGoogle Scholar
14Luton, M. J., Jayanth, C. S., Disko, M. M., Matras, S., and Vallone, J., in Multicomponent Ultrafine Microstructures, edited by McCandish, L. E., Kear, B. H., Polk, D. E., and Siegel, R. W. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), pp. 7986.Google Scholar
15Jangg, G., New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgelschaft MBH, Oberursel, West Germany, 1989), pp. 3952.Google Scholar
16Whittenberger, J. D., Buzek, B. C., and Wirth, G., J. Mater. Sci. 21, 923 (1986).CrossRefGoogle Scholar
17Whittenberger, J. D., in Solid State Powder Processing, edited by Clauer, A. H. and deBarbadillo, J. J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), pp. 137155.Google Scholar
18Harmouche, M. R. and Wolfenden, A., Journal of Testing and Evaluation 15, 101 (1987).CrossRefGoogle Scholar
19Whittenberger, J. D., Arzt, E., and Luton, M. J., in Intermetallic Matrix Composites, edited by Anton, D. L., McMeeking, R., Miracle, D., and Martin, P. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 211217.Google Scholar
20Nathal, M. V. and Ebert, L. J., Metall. Trans. A 16A, 1863 (1985).CrossRefGoogle Scholar
21Whittenberger, J. D.: NASA TP-1791, 1981.Google Scholar
22Lowell, Carl E., Barrett, Charles A., and Whittenberger, J. D., in Intermetallic Matrix Composites, edited by Anton, D. L., McMeeking, R., Miracle, D., and Martin, P. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 355360.Google Scholar