Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T06:05:12.978Z Has data issue: false hasContentIssue false

A Portrait of Nanomedicine and its Bioethical Implications

Published online by Cambridge University Press:  01 January 2021

Extract

While the definitions employed by different governmental agencies and scientific societies differ somewhat, the term “nanotechnology” is generally understood to refer to the manufacturing, characterization, and use of man-made devices with dimensions on the order of 1-100 nanometers (1 nanometer [nm] = 1 billionth of a meter). Devices that comprise a fundamental functional element that is nanotechnological are also frequently comprised within nanotechnology, as are manufactured objects with dimensions less than one micrometer. The differences in definition lead to occasional paradoxes, such as the fact that the most widely used nanodrug (albumin nanoparticles of dimensions up to 300 nm, comprising the anticancer drug paclitaxel) is labeled a “nanopharmaceutical” by governments of European countries, Canada, and Australia, but it is not a nanotechnology for the U.S. Food and Drug Administration (FDA). It is also common in scientific domains to restrict the term “nanotechnology” to objects that possess special, “emerging” properties that only arise because of their nanoscale dimension.

Type
Symposium
Copyright
Copyright © American Society of Law, Medicine and Ethics 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Theis, T. Parr, D. Binks, P. Ying, J. Drexler, K. E. Schepers, E. Mullis, K. Bai, C. Boland, J. J. Langer, R. Dobson, P. Rao, C. N., and Ferrari, M., “Nan’o.tech.nol’o.gy n.,” Nature Nanotechnology 1, no. 1 (2006): 810.Google Scholar
Taniguchi, N., “On the Basic Concept of ‘Nano-Technology’,” in Proceedings of the International Conference of Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering, 1974.Google Scholar
The Nobel Prize in Physics 2010, Nobel Prize website, available at <http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/> (last visited October 25, 2012).+(last+visited+October+25,+2012).>Google Scholar
Asimov, I., Fantastic Voyage: A Novel (Boston, Houghton Mifflin, 1966).Google Scholar
Baum, R., “Nanotechnology: Drexler and Smalley Make the Case for and against ‘Molecular Assemblers,’” Chemical & Engineering News (American Chemical Society), 81, no. 48 (2003): 3742, available at <http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html> (last visited October 26, 2012).Google Scholar
Moore, G. E., “Cramming More Components onto Integrated Circuits,” Electronics 38, no. 8 (1965), available at <ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf> (last visited October 26, 2012).Google Scholar
BCC Research Market Forecasting, Nanotechnology: A Realistic Market Assessment. 2010, NAN031D, available at <http://www.bccresearch.com/report/NAN031D.html> www.bccre-search.com/report/NAN031D.html> (last visited October 26, 2012).+www.bccre-search.com/report/NAN031D.html>+(last+visited+October+26,+2012).>Google Scholar
Ferrari, M., “Cancer Nanotechnology: Opportunities & Challenges,” Nature Reviews in Cancer 5, no. 3 (2005): 161171; Ferrari, M., “Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers,” Trends in Biotechnology 28, no. 4 (2010): 181–188. Salvador-Morales, C. Valencia, P. M. Thakkar, A. B. Swanson, E. W. and Langer, R., “Recent Developments in Multifunctional Hybrid Nanoparticles: Opportunities and Challenges in Cancer Therapy,” Frontiers in Bioscience (Elite Ed.) 4, no. 4 (2012): 529–545; Langer, R., “Drug Delivery and Targeting,” Nature 392, no. 6679, Supp. (1998): 5–10.CrossRefGoogle Scholar
Fang, J. Nakamura, H., and Maeda, H., “The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect,” Advanced Drug Delivery Reviews 63, no. 3 (2011): 136151; Maeda, H. Wu, J. Sawa, T. Matsumura, Y., and Hori, K., “Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review,” Journal of Controlled Release 65, no. 1-2 (2000): 271–284.CrossRefGoogle Scholar
Barenholz, Y. C., “Doxil® – The First FDA-Approved Nano-Drug: Lessons Learned,” Journal of Controlled Release, March, 29, 2012, available at <http://www.ncbi.nlm.nih.gov/pubmed/22484195> (last visited October 26, 2012); McGee, P., “Delivering on Nano's Promise,” Drug Discovery & Development Magazine 9, no. 10 (2006): 1218.Google Scholar
Clinicaltrials.gov, Bethesda (MD): National Library of Medicine (US), available at <http://www.clinicaltrials.gov/ct2/results?term=liposome&recr=Open&no_unk=Y> (last visited October 26, 2012).+(last+visited+October+26,+2012).>Google Scholar
Davis, M. E. Zuckerman, J. E. Choi, C. H. Seligson, D. Tolcher, A. Alabi, C. A. Yen, Y. Heidel, J. D., and Ribas, A., “Evidence of RNAi in Humans from Systemically Administered siRNA via Targeted Nanoparticles,” Nature 464, no. 7291 (2010): 10671070; Calando Pharmaceuticals, “Safety Study of CALAA-01 to Treat Solid Tumor Cancers,” in ClinicalTrials.gov, Bethesda (MD): National Library of Medicine (U.S.), NLM Identifier: NCT00689065, available at <http://www.clinicaltrials.gov/ct2/show/NCT00689065> (last visited October 26, 2012); BIND Biosciences, “A Study of BIND-014 Given to Patients with Advanced or Metastatic Cancer,” in ClinicalTrials.gov, Bethesda (MD): National Library of Medicine (US), NLM Identifier: NCT01300533, available at <http://www.clinicaltrials.gov/ct2/show/NCT01300533> (last visited October 26, 2012).CrossRefGoogle Scholar
Vishnu, P. and Roy, V., “Nab-Paclitaxel: A Novel Formulation of Taxane for Treatment of Breast Cancer,” Womens Health (London) 6, no. 4 (2010): 495506.CrossRefGoogle Scholar
Maier-Hauff, K. Ulrich, F. Nestler, D. Niehoff, H. Wust, P. Thiesen, B. Orawa, H. Budach, V., and Jordan, A., “Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined with External Beam Radiotherapy on Patients with Recurrent Glioblastoma Multiforme,” Journal of Neurooncology 103, no. 2 (2011): 317324.CrossRefGoogle Scholar
Hu, M. Chen, J. Li, Z. Y. Au, L. Hartland, G. V. Li, X. Marquez, M., and Xia, Y., “Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications,” Chemical Society Reviews 35, no. 11 (2006): 10841094; Hirsch, L. R. Stafford, R. J. Bankson, J. A. Sershen, S. R. Rivera, B. Price, R. E. Hazle, J. D. Halas, N. J., and West, J. L., “Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance,” Proceedings of the National Academy of Sciences of the United States of America 100, no. 23 (2003): 13549–13554.CrossRefGoogle Scholar
See Ferrari, (2010), supra note 9.Google Scholar
Tasciotti, E. Liu, X. Bhavane, R. Plant, K. Leonard, A. D. Price, B. K. Cheng, M. M. Decuzzi, P. Tour, J. M. Robertson, F., and Ferrari, M., “Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications,” Nature Nanotechnology 3, no. 3 (2008): 151157.CrossRefGoogle Scholar
Tanaka, T. Mangala, L. S. Vivas-Mejia, P. E. Nieves-Alicea, R. Mann, A. P. Mora, E. Han, H. D. Shahzad, M. M. Liu, X. Bhavane, R. Gu, J. Fakhoury, J. R. Chiappini, C. Lu, C. Matsuo, K. Godin, B. Stone, R. L. Nick, A. M. Lopez-Berestein, G. Sood, A. K., and Ferrari, M., “Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles,” Cancer Research 70, no. 9 (2010): 36873696.CrossRefGoogle Scholar
Shen, H. You, J. Zhang, G. Ziemys, A. Li, Q. Bai, L. Deng, X. Erm, D. R. Liu, X. Li, C., and Ferrari, M., “Cooperative, Nanoparticle-Enabled Thermal Therapy of Breast Cancer,” Advanced Healthcare Materials 1, no. 1 (2012): 8489.CrossRefGoogle Scholar
Ananta, J. S. Godin, B. Sethi, R. Moriggi, L. Liu, X. Serda, S. E. Krishnamurthy, R. Muthupillai, R. Bolskar, R. D. Helm, L. Ferrari, M. Wilson, L. J., and Decuzzi, P., “Geometrical Confinement of Gadolinium-Based Contrast Agents in Nanoporous Particles Enhances T1 Contrast,” Nature Nanotechnology 5, no. 11 (2010): 815821.CrossRefGoogle Scholar
See Davis, , supra note 13.Google Scholar
Prakash, S. Khan, A., and Paul, A., “Nanoscaffold Based Stem Cell Regeneration Therapy: Recent Advancement and Future Potential,” Expert Opinion on Biological Therapy 10, no. 12 (2010): 16491661; Dolatshahi-Pirouz, A. Nikkhah, M. Kolind, K. Dokmeci, M. R., and Khademhosseini, A., “Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions,” Journal of Functional Biomaterials 2, no. 3 (2011): 88–106; Mata, A. Palmer, L. Tejeda-Montes, E., and Stupp, S. I., “Design of Biomolecules for Nanoengineered Biomaterials for Regenerative Medicine,” Methods in Molecular Biology 811(2012): 39–49.CrossRefGoogle Scholar
Desai, T. A. Hansford, D. J. Kulinsky, L. Nashat, A. H. Ras, G. Tu, J. Wang, Y. Zhang, M., and Ferrari, M., “Nanopore Technology for Biomedical Applications,” Biomedical Microdevices 2, no. 1 (1999): 1140; Fine, D. Grattoni, A. Zabre, E. Hussein, F. Ferrari, M., and Liu, X., “A Low-Voltage Electrokinetic Nanochannel Drug Delivery System,” Lab on a Chip 11, no. 15 (2011): 2526–2534; Fine, D. Grattoni, A. Hosali, S. Ziemys, A. De Rosa, E. Gill, J. Medema, R. Hudson, L. Kojic, M. Milosevic, M. Brousseau, L. III Goodall, R. Ferrari, M., and Liu, X., “A Robust Nanofluidic Membrane with Tunable Zero-Order Release for Implantable Dose Specific Drug Delivery,” Lab on a Chip 10, no. 22 (2010): 3074–3083; Grattoni, A. Shen, H. Fine, D. Ziemys, A. Gill, J. S. Hudson, L. Hosali, S. Goodall, R. Liu, X., and Ferrari, M., “Nanochannel Technology for Constant Delivery of Chemotherapeutics: Beyond Metronomic Administration,” Pharmaceutical Research 28, no. 2 (2011): 292–300.CrossRefGoogle Scholar
Desai, T. A. Chu, W. H. Rasi, G. Sinibaldi-Vallebona, P. Guarino, E., and Ferrari, M., “Microfabricated Biocapsules Provide Short-Term Immunoisolation of Insulinoma Xenografts,” Biomedical Microdevices 1, no. 2 (1999): 131138; Desai, T. A. Chu, W. H. Tu, J.K. Beattie, G. M. Hayek, A., and Ferrari, M., “Microfabricated Immunoisolating Biocapsules,” Iotechnology and Bioengineering 57, no. 1 (1988): 118–120.CrossRefGoogle Scholar
Bouamrani, A. Hu, Y. Tasciotti, E. Li, L. Chiappini, C. Liu, X., and Ferrari, M., “Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome,” Proteomics 10, no. 3 (2010): 496505; Hill, H. D. and Mirkin, C. A., “The Bio-Barcode Assay for the Detection of Protein and Nucleic Acid Targets Using DTT-Induced Ligand Exchange,” Nature Protocols 1, no. 1 (2006): 324–336; Georganopoulou, D. G. Chang, L. Nam, J. M. Thaxton, C. S. Mufson, E. J. Klein, W. L., and Mirkin, C. A., “Nanoparticle-Based Detection in Cerebral Spinal Fluid of a Soluble Pathogenic Biomarker for Alzheimer's Disease,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 7 (2005): 2273–2276; Fan, R. Vermesh, O. Srivastava, A. Yen, B. K. Qin, L. Ahmad, H. Kwong, G. A. Liu, C. C. Gould, J. Hood, L., and Heath, J. R., “Integrated Barcode Chips for Rapid, Multiplexed Analysis of Proteins in Microliter Quantities of Blood,” Nature Biotechnology 26, no. 12 (2008): 1373–1378; Qin, L. Vermesh, O. Shi, Q., and Heath, J. R., “Self-Powered Microfluidic Chips for Multiplexed Protein Assays from Whole Blood,” Lab on a Chip 9, no. 14 (2009): 2016–2020; Burg, T. P. Godin, M. Knudsen, S. M. Shen, W. Carlson, G. Foster, J. S. Babcock, K., and Manalis, S. R., “Weighing of Biomolecules, Single Cells and Single Nanoparticles in Fluid,” Nature 446, no. 7139 (2007): 1066–1069; Hu, Y. Bouamrani, A. Tasciotti, E. Li, L. Liu, X., and Ferrari, M., “Tailoring of the Nanotexture of Mesoporous Silica Films and Their Functionalized Derivatives for Selectively Harvesting Low Molecular Weight Protein,” ACS Nano 4, no. 1 (2010): 439–451.CrossRefGoogle Scholar
Brenner, M. K., “Personalized Medicine: Words That Mean Just What You Choose?” Molecular Therapy 20, no. 2 (2012): 241242; Sakamoto, J. H. van de Ven, A. L. Godin, B. Blanco, E. Serda, S. E. Grattoni, A. Ziemys, A. Bouamrani, A. Hu, T. Ranganathan, S. I. De Rosa, E. Martinez, J. O. Smid, C. A. Buchanan, R. M. Lee, S. Y. Srinivasan, S. Landry, M. Meyn, A. Tasciotti, E. Liu, X. Decuzzi, P., and Ferrari, M., “Enabling Individualized Therapy through Nanotechnology,” Pharmacology Research 62, no. 2 (2010): 57–89.CrossRefGoogle Scholar
Id. (Sakamoto, et al.).Google Scholar
See Desai, et al., Fine, et al. (2010 & 2011), and Grattoni, et al., supra note 24.Google Scholar
See Prakash, et al., Dolatshahi-Pirouz, et al., and Mata, et al., supra note 23.Google Scholar
See Bouamrani, et al., supra note 26; Sakamoto, et al., supra note 27.Google Scholar
Clinton, W. J., “President Clinton's Address to Caltech on Science and Technology,” remarks by the President at Science and technology Event, California Institute of Technology, Pasadena, CA, 2002.Google Scholar
Malakoff, D., “A Clinton Initiative in a Science of Smallness,” New York Times, January 21, 2000, available at <http://www.nytimes.com/library/tech/00/01/biztech/articles/21chip.html> (last visited October 30, 2012).+(last+visited+October+30,+2012).>Google Scholar
Malakoff, D., “Nanotechnology Research: Congress Wants Studies of Nanotech's ‘Dark Side,’” Science 301, no. 5629 (2003): 27.CrossRefGoogle Scholar
See Theis, et al., supra note 1; Peterson, C., Testimony at the Committee on Science, U.S. House of Representatives Hearing to Examine the Societal Implications of Nanotechnology and Consider H.R. 766, The Nanotechnology Research and Development Act of 2003 (April 9, 2003); Institute of Medicine, Nanotechnology and Oncology: Workshop Summary (Washington, D.C.: The National Academies Press, 2011).Google Scholar
See Theis, et al., supra note 1; id. (Peterson); (Institute of Medicine).Google Scholar
Salamanca-Buentello, F. Persad, D. L. Court, E. B. Martin, D. K. Daar, A. S., and Singer, P. A., “Nanotechnology and the Developing World,” PLoS Medicine 2, no. 5 (2005): E97.CrossRefGoogle Scholar
Ferrari, M., “Session 5: Nanotechnology, Medicine, and Ethics,” testimony at the President's Council on Bioethics, June 7, 2007, available at <http://bioethics.georgetown.edu/pcbe/transcripts/june07/session5.html> (last visited October 30, 2012); Ferrari, M., “Cancer Nanotechnology: Opportunities & Challenges,” Nature 5, no. 3 (2005): 161171; Sanhai, W. R. Sakamoto, J. H. Canady, R., and Ferrari, M., “Seven Challenges for Nanomedicine,” Nature Nanotechnology 3, no. 5 (2008): 242–244; see Theis, et al., supra note 1; Peterson, , supra note 35; Institute of Medicine, supra note 35; Maynard, A. D., “Don't Define Nanomaterials,” Nature 475, no. 7354 (2011): 31; Maynard, A. D. Warheit, D. B., and Philbert, M. A., “The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond,” Toxicological Sciences 120, Supp. 1 (2011): S109–S129; Maynard, A. D., “Session 4: Nanotechnology: Benefits and Risks,” The President's Council on Bioethics, June 29, 2007, available at <http://bioethics.georgetown.edu/pcbe/transcripts/june07/session4.html> (last visited October 30, 2012).Google Scholar
Id. (Ferrari); Sanhai, et al., supra note 38.Google Scholar
See Theis, et al., supra note 1; Peterson, , supra note 35; Institute of Medicine, supra note 35; Maynard, et al. (Nature), supra note 38; Maynard, et al. (Toxicological Sciences), supra note 38; Maynard, (The President's Council on Bioethics), supra note 38.Google Scholar
See Maynard, (Nature), supra note 38; Maynard, (Toxicological Sciences), supra note 38.Google Scholar
See Maynard, (Nature), supra note 38.Google Scholar
See Maynard, (President's Council on Bioethics), supra note 38.Google Scholar
Nel, A. Xia, T. Mädler, L., and Li, N., “Toxic Potential of Materials at the Nanolevel,” Science 311, no. 5761 (2006): 622627; Zhao, F. Zhao, Y. Liu, Y. Chang, X. Chen, C., and Zhao, Y., “Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials,” Small 7, no. 10 (2011): 1322–1337.CrossRefGoogle Scholar
Zhao, Y. Xing, G., and Chai, Z., “Nanotoxicology: Are Carbon Nanotubes Safe?” Nature Nanotechnology 3, no. 4 (2008): 191192.CrossRefGoogle Scholar
See Ferrari, (President's Council on Bioethics), supra note 38; Maynard, (Toxicological Sciences), supra note 38.Google Scholar
See Institute of Medicine, supra note 35.Google Scholar
Paradise, J. Wolf, S. M. Kuzma, J. Kuzhabekova, A. Tisdale, A. W. Kokkoli, E., and Ramachandran, G., “Developing U.S. Oversight Strategies for Nanobiotechnology: Learning from Past Oversight Experiences,” Journal of Law, Medicine & Ethics 37, no. 4 (2009): 688705.CrossRefGoogle Scholar
See Maynard, (Nature), supra note 38.Google Scholar
Ferrari, M. Philibert, M. A., and Sanhai, W. R., “Nanomedicine and Society,” Clinical Pharmacology & Therapeutics 85, no. 5 (2009): 466467.CrossRefGoogle Scholar
Black, E., War Against the Weak (New York: Four Walls Eight Windows, 2003); Proctor, R. N., Racial Hygeine: Medicine Under the Nazis (Cambridge: Harvard University Press, 1988).Google Scholar
Ferlay, J. Shin, H. R. Bray, F. Forman, D. Mathers, C., and Parkin, D. M., “GLOBOCAN 2008,” v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10, Lyon, France: International Agency for Research on Cancer, 2010, available at <http://globocan.iarc.fr> (last visited October 31, 2012; for statistics cited, search under “Online Analysis” link).Google Scholar
National Center for Health Statistics, “Deaths: Final Data for 2009,” at table 9, National Vital Statistics Reports, Volume 60, Number 03, 117 pp. (PHS) 2012–1120, available at <http://www.cdc.gov/nchs/products/nvsr.htm> (last visited November 6, 2012).+(last+visited+November+6,+2012).>Google Scholar
Fodor, S. P. Read, J. L. Pirrung, M. C. Stryer, L. Lu, A. T., and Solas, D., “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Science 251, no. 4995 (1991): 767773.CrossRefGoogle Scholar
See Maynard, (President's Council on Bioethics), supra note 38.Google Scholar
See Ferrari, (2005 and 2010), Salvador-Morales, , and Langer, , supra note 9; Maier-Hauff, , supra note 15.Google Scholar
See Barenholz, , supra note 11.Google Scholar
See Maier-Hauff, , supra note 15.Google Scholar
See Ferrari, (2010), supra note 9.Google Scholar
Rejeski, D., “Comments of Consumers Union of United States, Inc. to the U.S. Consumer Product Safety Commission on ‘Agenda, Priorities and Strategic Plan FY 2011,’” Panel 1, Consumer Product Safety Comissions: Public Hearing Commission Agenda, Priorities and Strategic Plan for FY2011, Bethesda, MD, August 25, 2009, available at <http://www.cpsc.gov/library/foia/foia09/pubcom/2011priorities.pdf> (last visited October 31, 2012).+(last+visited+October+31,+2012).>Google Scholar
See Nel, and Zhao, , supra note 44; Zhao, et al., supra note 45.Google Scholar
See Ferrari, (2010), supra note 9.Google Scholar
Rhodes, R., The Making of the Atomic Bomb (New York: Simon & Schuster, 1987).Google Scholar
Specter, M., “The Deadliest Virus,” The New Yorker, March 12, 2012, at 32; Enserink, M., “Scientists Brace for Media Storm around Controversial Flu Studies,” ScienceInsider, November 23, 2011; Enserink, M., “Free to Speak, Kawaoka Reveals Flu Details While Fouchier Stays Mum,” ScienceInsider, April 3, 2012; Enserink, M., “One of Two Hotly Debated H5N1 Papers Finally Published,” Science Now, May 2, 2012; Imai, M. Watanabe, T. Hatta, M. Das, S. C. Ozawa, M. Shinya, K. Zhong, G. Hanson, A. Katsura, H. Watanabe, S. Li, C. Kawakami, E. Yamada, S. Kiso, M. Suzuki, Y. Maher, E. A. Neumann, G., and Kawaoka, Y., “Experimental Adaptation of an Influenza H5 HA Confers Respiratory Droplet Transmission to a Reassortant H5 HA/H1N1 Virus in Ferrets,” Nature 486, no. 7403 (2012): 420428.Google Scholar
Committee on Opportunities in Biotechnology for Future Army Applications, Board on Army Science and Technology, Division on Engineering and Physical Sciences, National Research Council, Opportunities in Biotechnology for Future Army Applications (Washington, D.C.: The National Academies Press, 2001): at 11–15.Google Scholar
National Materials Advisory Board and Board on Army Science and Technology, Division on Engineering and Physical Sciences, National Research Council, Opportunities in Protection Materials Science and Technology for Future Army Applications (Washington, D.C.: The National Academies Press, 2011): at 11–15.Google Scholar
Crichton, M., Prey (New York: HarperCollins, 2002).Google Scholar
Soong, R. K. Bachand, G. D. Neves, H. P. Olkhovets, A. G. Craighead, H. G., and Montemagno, C. D., “Powering an Inorganic Nanodevice with a Biomolecular Motor,” Science 290, no. 5496 (2000): 15551558.CrossRefGoogle Scholar
Institute of Medicine's Committee on Genomics and the Public's Health in the 21st Century and Hernandez, L. M., ed., “Implications of Genomics for Public Health: Workshop Summary,” in The National Academies Collection: Reports Funded by National Institutes of Health (Washington, D.C.: National Academies Press, 2005).Google Scholar
Murphy, C. G. and Fornier, M., “HER2-Positive Breast Cancer: Beyond Trastuzumab,” Oncology (Williston Park) 24, no. 5 (2010): 410415.Google Scholar
See Ferlay, et al., supra note 53.Google Scholar
Id.; Denny, L., “Cervical Cancer Treatment in Africa,” Current Opinion in Oncology 23, no. 5 (2011): 469474.CrossRefGoogle Scholar
Cardenas-Turanzas, M. Freeberg, J. A. Benedet, J. L. Atkinson, E. N. Cox, D. D. Richards-Kortum, R. MacAulay, C. Follen, M., and Cantor, S. B., “The Clinical Effectiveness of Optical Spectroscopy for the In Vivo Diagnosis of Cervical Intraepithelial Neoplasia: Where Are We?” Gynecologic Oncology 107, Supp. 1 (2007): S138S146; Richards-Kortum, R., Biomedical Engineering for Global Health (Cambridge, U.K.: Cambridge University Press, 2010).CrossRefGoogle Scholar
See Ferrari, et al., supra note 51.Google Scholar
Bosetti, R., Cost Effectiveness of Cancer Nanotechnology, Dissertation, D/2012/2451/8 (Belgium: Hasselt University, 2012).Google Scholar