Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T14:25:57.992Z Has data issue: false hasContentIssue false

Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma

Published online by Cambridge University Press:  07 July 2017

A Mishra*
Affiliation:
Department of Otorhinolaryngology, Nepalgunj Medical College, Nepal
A Pandey
Affiliation:
Department of Otorhinolaryngology, Nepalgunj Medical College, Nepal
S C Mishra
Affiliation:
Department of Obstetrics and Gynaecology, King George Medical University, Lucknow, India
*
Address for correspondence: Dr A Mishra, A-1/19, Sector H Aliganj, Lucknow, Uttar Pradesh, India E-mail: [email protected]

Abstract

Background:

Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma.

Methods:

Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports.

Results:

Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated.

Conclusion:

Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.

Type
Review Article
Copyright
Copyright © JLO (1984) Limited 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This review is based PhD work of Dr Anupam Mishra.

References

1 Mishra, A, Mishra, SC. Changing trends in the incidence of juvenile nasopharyngeal angiofibroma: seven decades of experience at King George's Medical University, Lucknow India. J Laryngol Otol 2016;130:363–8Google Scholar
2 Chew, CT. Nasopharynx (the postnasal space). In: Kerr, AG, Groves, J, eds. Scott-Brown's Otolaryngology: Rhinology V. 4, 5th edn. London: Butterworth, 1987 Google Scholar
3 Pandey, P, Mishra, A, Tripathi, AM, Verma, V, Trivedi, R, Singh, HP et al. Current molecular profile of juvenile nasopharyngeal angiofibroma: first comprehensive study from India. Laryngoscope 2016;3:E1006 Google Scholar
4 Mishra, A, Singh, V, Verma, V, Pandey, S, Trivedi, R, Singh, HP et al. Current status and clinical correlation of beta-catenin in juvenile nasopharyngeal Angiofibroma. J Laryngol Otol 2016;30:17 Google Scholar
5 Boghani, Z, Husain, Q, Kanumuri, VV, Khan, MN, Sangvhi, S, Liu, JK et al. Juvenile nasopharyngeal angiofibroma: a systematic review and comparison of endoscopic, endoscopic-assisted, and open resection in 1047 cases. Laryngoscope 2013;123:859–69Google Scholar
6 Saylam, G, Yucel, OT, Sungur, A, Onerci, M. Proliferation, angiogenesis and hormonal markers in juvenile nasopharyngeal angiofibroma. Int J Pediatr Otorhinolaryngol 2006;70:227–34Google Scholar
7 Brentani, MM, Butugan, O, Oshima, CTF, Torloni, H, Paiva, LJ. Multiple steroid receptors in nasopharyngeal angiofibromas. Laryngoscope 1989;99:398401 Google Scholar
8 Johns, ME, MacLeod, RM, Cantrell, RW. Estrogen receptors in nasopharyngeal angiofibromas. Laryngoscope 1980;90:628–34CrossRefGoogle ScholarPubMed
9 Lee, DA, Rao, BR, Meyer, JS, Prioleau, PG, Bauer, WC. Hormonal receptor determination in juvenile nasopharyngeal angiofibromas. Cancer 1980;46:547–51Google Scholar
10 Hwang, HC, Mills, SE, Patterson, K, Gown, AM. Expression of androgen receptors in nasopharyngeal angiofibroma: an immunohistochemical study of 24 cases. Mod Pathol 1998;11:1122–6Google Scholar
11 Farag, MM, Ghanimah, SE, Ragaie, A, Saleem, TH. Hormonal receptors in juvenile nasopharyngeal angiofibroma. Laryngoscope 1987;97:208–11Google Scholar
12 Antonelli, AR, Cappiello, J, Donajo, CA, Di Lorenzo, D, Nicolai, P, Orlandini, A. Diagnosis, staging and treatment of juvenile nasopharyngeal angiofibroma (JNA). Laryngoscope 1987;97:1319–25Google Scholar
13 Gatalica, Z. Immunohistochemical analysis of steroid hormone receptors in nasopharyngeal angiofibromas. Cancer Lett 1998;127:8993 Google Scholar
14 Liu, Z, Wang, J, Wang, H, Wang, D, Hu, L, Liu, Q et al. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma. Acta Otolaryngol 2015;135:51–7CrossRefGoogle ScholarPubMed
15 Montag, AG, Tretiakova, M, Richardson, M. Steroid hormone receptor expression in nasopharyngeal angiofibromas. Consistent expression of estrogen receptor beta. Am J Clin Pathol 2006;125:832–7Google Scholar
16 Brieger, J, Wierzbicka, M, Sokolov, M, Roth, Y, Szyfter, W, Mann, WJ. Vessel density, proliferation and immunolocalization of vascular endothelial growth factor in juvenile nasopharyngeal angiofibromas. Arch Otolaryngol Head Neck Surg 2004;130:727–31Google Scholar
17 Zhang, M, Sun, X, Yu, H, Hu, L, Wang, D. Biological distinctions between juvenile nasopharyngeal angiofibroma and vascular malformation: an immunohistochemical study. Acta Histochem 2011;113:626–30Google Scholar
18 Nonogaki, S, Campos, HG, Butugan, O, Soares, FA, Mangone, FR, Torloni, H et al. Markers of vascular differentiation, proliferation and tissue remodelling in juvenile nasopharyngeal angiofibromas. Exp Ther Med 2010;1:921–6Google Scholar
19 Ponti, G, Losi, L, Pellacani, G, Rossi, GB, Presutti, L, Mattioli, F et al. Wnt pathway, angiogenetic and hormonal markers in sporadic and familial adenomatous polyposis-associated juvenile nasopharyngeal angiofibromas (JNA). Appl Immunohistochem Mol Morphol 2008;16:173–8Google Scholar
20 Schuon, R, Brieger, J, Heinrich, UR, Roth, Y, Szyfter, W, Mann, WJ. Immunohistochemical analysis of growth mechanisms in juvenile angiofibroma. Eur Arch Otorhinolaryngol 2007;264:389–94Google Scholar
21 Schiff, M, Gonzalez, A, Ong, M, Baird, A. Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF. Laryngoscope 1992;102:940–5Google Scholar
22 Silveira, SM, Custódio Domingues, MA, Butugan, O, Brentani, MM, Rogatto, SR. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck 2012;34:485–92Google Scholar
23 Nagai, MA, Butugan, O, Logullo, A, Brentani, MM. Expression of growth factors, protooncogenes and p53 in nasopharyngeal angiofibromas. Laryngoscope 1996;106:190–5Google Scholar
24 Schick, B, Wemmert, S, Jung, V, Steuder, W, Montenarh, M, Urbschat, S. Genetic heterogeneity of MYC oncogene in advanced juvenile angiofibromas. Cancer Genet Cytogenet 2006;164:2531 Google Scholar
25 Zhang, PJ, Weber, R, Liang, H, Pasha, TL, LiVolsi, VA. Growth factors and receptors in juvenile nasopharyngeal angiofibroma and nasal polyps. Arch Pathol Lab Med 2003;127:1480–4Google Scholar
26 Pauli, J, Gundelach, R, Vanelli-Rees, A, Rees, G, Campbell, C, Dubey, S et al. Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology 2008;40:396400 Google Scholar
27 Dillard, DG, Cohen, C, Muller, S, Del Gaudio, J, Reichman, O, Parrish, B et al. Immunolocalization of activated transforming growth factor beta1 in juvenile nasopharyngeal angiofibroma. Arch Otolaryngol Head Neck Surg 2000;126:723–5Google Scholar
28 Rippel, C, Plinkert, PK, Schick, B. Expression of members of the cadherin-/catenin-protein family in juvenile angiofibromas [in German]. Laryngorhinootologie 2003;82:353–7Google Scholar
29 Abraham, SC, Montgomery, EA, Giardiello, FM, Wu, TT. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 2001;158:1073–8CrossRefGoogle ScholarPubMed
30 Schick, B, Veldung, B, Wemmert, S, Jung, V, Montenarh, M, Meese, E et al. p53 and Her-2/neu in juvenile angiofibromas. Oncol Rep 2005;13:453–7Google Scholar
31 Coutinho-Camillo, CM, Brentani, MM, Butugan, O, Torloni, H, Nagai, MA. Relaxation of imprinting of IGFII gene in juvenile nasopharyngeal angiofibromas. Diagn Mol Pathol 2003;12:5762 Google Scholar
32 Maniglia, MP, Ribeiro, ME, Costa, NM, Jacomini, ML, Carvalho, TB, Molina, FD et al. Molecular pathogenesis of juvenile nasopharyngeal angiofibroma in Brazilian patients. Pediatr Hematol Oncol 2013;30:616–22Google Scholar
33 Gautham, K, Ogale, SB, Shraddha, RU, Ajay, D. Expression of GSTM1 in angiofibromas. J Laryngol Otol 2002;116:352–4Google Scholar
34 Krstulja, M, Car, A, Bonifacić, D, Braut, T, Kujundzić, M. Nasopharyngeal angiofibroma with intracellular accumulation of SPARC – a hypothesis (SPARC in nasopharyngeal angiofibroma). Med Hypotheses 2008;70:600–4Google Scholar
35 Wendler, O, Schäfer, R, Schick, B. Mast cells and T-lymphocytes in juvenile angiofibromas. Eur Arch Otorhinolaryngol 2007;264:769–75Google Scholar
36 Schick, B, Wemmert, S, Bechtel, U, Nicolai, P, Hofmann, T, Golabek, W et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck 2007;29:479–87Google Scholar
37 Renkonen, S, Häyry, V, Heikkilä, P, Leivo, I, Haglund, C, Mäkitie, AA et al. Stem cell-related proteins C-KIT, C-MYC and BMI-1 in juvenile nasopharyngeal angiofibroma – do they have a role? Virchows Arch 2011;458:189–95Google Scholar
38 Coutinho, CM, Bassini, AS, Gutiérrez, LG, Butugan, O, Kowalski, LP, Brentani, MM et al. Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer. Sao Paulo Med J 1999;117:113–20Google Scholar
39 Renkonen, S, Heikkilä, P, Haglund, C, Mäkitie, AA, Hagström, J. Tenascin-C. GLUT-1, and syndecan-2 expression in juvenile nasopharyngeal angiofibroma: correlations to vessel density and tumor stage. Head Neck 2013;35:1036–42Google Scholar
40 Wang, JJ, Sun, XC, Hu, L, Liu, ZF, Yu, HP, Li, H et al. Endoglin (CD105) expression on microvessel endothelial cells in juvenile nasopharyngeal angiofibroma: tissue microarray analysis and association with prognostic significance. Head Neck 2013;35:1719–25Google Scholar
41 Duerr, S, Wendler, O, Aigner, T, Karosi, S, Schick, B. Metalloproteinases in juvenile angiofibroma – a collagen rich tumor. Hum Pathol 2008;39:259–68Google Scholar
42 Sun, X, Guo, L, Wang, J, Wang, H, Liu, Z, Liu, J et al. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis. Int J Pediatr Otorhinolaryngol 2014:78:1232–8CrossRefGoogle ScholarPubMed
43 Sun, X, Guo, L Wang, H, Yu, H, Wang, J, Meng, X et al. The presence of tumor-infiltrating IL-17-producing cells in juvenile nasopharyngeal angiofibroma tumor microenvironment is a poor prognostic factor. Am J Otolaryngol 2014:35:582–8Google Scholar
44 Renkonen, S, Cardell, LO, Mattila, P, Lundberg, M, Haglund, C, Hagström, J et al. Toll-like receptors 3, 7, and 9 in juvenile nasopharyngeal angiofibroma. APMIS 2015;123:439–44Google Scholar
45 Schiff, M. Juvenile nasopharyngeal angiofibroma. Laryngoscope 1959;69:9811016.Google Scholar
46 Martin, H, Ehrlich, HE, Abels, JC. Juvenile nasopharyngeal angiofibroma. Ann Surg 1948;127:513–36Google Scholar
47 Johnsen, S, Kloster, JH, Schiff, M. The action of hormones on juvenile nasopharyngeal angiofibroma. Acta Otolaryngol 1966;61:153–60Google Scholar
48 Kumagami, H. Testosterone and estradiol in juvenile nasopharyngeal angiofibroma tissue. Acta Otolaryngol 1991;111:569–73Google Scholar
49 Kumagami, H. Sex hormones in juvenile nasopharyngeal angiofibroma tissue. Auris Nasus Larynx 1993;20:131–5CrossRefGoogle ScholarPubMed
50 Riggs, S, Orlandi, RR. Juvenile nasopharyngeal angiofibroma recurrence associated with exogenous testosterone therapy. Head Neck 2010;32:812–15Google Scholar
51 Kuttner, K, Katekamp, D, Stiller, D. Hormone therapy of the juvenile angiofibroma. Arch Otorhinolaryngol 1977;214:331–8Google Scholar
52 Arbiser, ZK, Arbiser, JL, Cohen, C, Gal, AA. Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod Pathol 2001;14:1195–9Google Scholar
53 Juric, G, Zarkovic, N, Nola, M, Tillian, M, Jukić, S. The value of cell proliferation and angiogenesis in the prognostic assessment of ovarian granulosa cell tumors. Tumori 2001;87:4753 Google Scholar
54 Haggstrom, S, Lissbrant, IF, Bergh, A, Damber, JE. Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. J Urol 1999;161:1620–5Google Scholar
55 Russell, PJ, Bennett, S, Stricker, P. Growth factor involvement in progression of prostate cancer. Clin Chem 1998;44:705–23Google Scholar
56 Kimbro, KS, Simons, JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 2006;13:739–49Google Scholar
57 Pelengaris, S, Khan, M, Evan, G. c-MYC: more than just a matter of life and death. Nat Rev Cancer 2002;2:764–6CrossRefGoogle ScholarPubMed
58 Liu, J, Levens, D. Making myc. Curr Top Microbiol Immunol 2006;302:132 Google Scholar
59 Levens, D. Disentangling the MYC web. Proc Natl Acad Sci U S A 2002;99:5757–9Google Scholar
60 Amir, AL, Barua, M, McKnight, NC, Cheng, S, Yuan, X, Balk, SP. A direct b-catenin independent interaction between androgen receptor and T cell factor. J Biol Chem 2003;278:30828–34Google Scholar
61 Pauli, J, Gundelach, R, Vanelli-Rees, A, Rees, G, Campbell, C, Dubey, S et al. Juvenile nasopharyngeal angiofibroma: an immunohistochemical characterisation of the stromal cell. Pathology 2008;40:396400 Google Scholar
62 Barbacid, M. Ras genes. Annu Rev Biochem 1987;56:779827 Google Scholar
63 Bos, JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682–9Google ScholarPubMed
64 Valanzano, R, Curia, MC, Aceto, G, Veschi, S, De Lellis, L, Catalano, T et al. Genetic evidence that juvenile nasopharyngeal angiofibroma is an integral FAP tumour. Gut 2005;54:1046–7Google Scholar
65 Klockars, T, Renkonen, S, Leivo, I, Hagström, J, Mäkitie, AA. Juvenile nasopharyngeal angiofibroma: no evidence for inheritance or association with familial adenomatous polyposis. Fam Cancer 2010;9:401–3Google Scholar
66 Schick, B, Brunner, C, Praetorius, M, Plinkert, PK, Urbschat, S. First evidence of genetic imbalances in angiofibromas. Laryngoscope 2002;112:397401 Google Scholar
67 Mohr, LC, Rodgers, JK, Silvestri, GA. Glutathione S-transferase M1 polymorphism and the risk of lung cancer. Anticancer Res 2003;23:2111–24Google Scholar
68 Smith, MR, Kantoff, PW. Molecular biology of prostate cancer. In: Mendelsohn, AC, Howley, A, Israel, SJ, Liotta, L, eds. The Molecular Basis of Cancer, 2nd edn. Philadelphia: WB Saunders, 2001:723–5Google Scholar