Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-08T00:10:24.457Z Has data issue: false hasContentIssue false

Temperature and luminosity outputs of endoscopes used in transcanal endoscopic ear surgery: an experimental study

Published online by Cambridge University Press:  29 April 2022

T D Milner*
Affiliation:
Department of Otolaryngology, University Hospital Monklands, NHS Lanarkshire, Airdrie, Scotland, UK
M Jaffer
Affiliation:
Department of Otolaryngology, University Hospital Monklands, NHS Lanarkshire, Airdrie, Scotland, UK
A Iyer
Affiliation:
Department of Otolaryngology, University Hospital Monklands, NHS Lanarkshire, Airdrie, Scotland, UK
*
Author for correspondence: Mr Thomas Daniel Milner, Department of Otolaryngology, University Hospital Monklands, Airdrie ML6 0JS, Scotland, UK E-mail: [email protected]

Abstract

Objective

To establish the relationship between endoscope temperatures and luminosity with a variety of light source types, endoscope ages, endoscope sizes, angles and operative distance in transcanal endoscopic ear surgery.

Methods

Transcanal endoscopic ear surgery was simulated in an operating theatre using 7 mm plastic suction tubing coated in insulating tape. An ATP ET-959 thermometer was used to record temperatures, and a Trotec BF06 lux meter was used to measure luminosity. Luminosity and temperature recordings were taken at 0 mm and 5 mm from the endoscope tip.

Results

Thermal energy transfer from operating endoscopes is greatest when: the light intensity is high, there is a light-emitting diode light source and the endoscope is touching the surface. Additionally, larger-diameter endoscopes, angled endoscopes and new endoscopes generated greater heat.

Conclusion

It is recommended that operative light intensity is maintained at the lowest level possible, and that the surgeon avoids contact between patient tissues and the endoscope tip.

Type
Main Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Mr T D Milner takes responsibility for the integrity of the content of the paper

Presented at the ENT Scotland Winter Meeting, 8 November 2019, Stirling, Scotland, UK, and at the British Academy Conference in Otolaryngology (BACO), 10–12 January 2021 (virtual conference).

References

Kozin, ED, Gulati, S, Kaplan, AB, Lehmann, AE, Remenschneider, AK, Landegger, LD et al. Systematic review of outcomes following observational and operative endoscopic middle ear surgery. Laryngoscope 2015;125:1205–1410.1002/lary.25048CrossRefGoogle ScholarPubMed
Fradeani, D, Milner, TD, Iyer, A. Learning curve in endoscopic tympanoplasties: a prospective study based on outcomes of 141 cases. Clin Otolaryngol 2021;46:888–9210.1111/coa.13746CrossRefGoogle ScholarPubMed
Mitchell, S, Coulson, C. Endoscopic ear surgery: a hot topic? J Laryngol Otol 2017;131:117–2210.1017/S0022215116009828CrossRefGoogle ScholarPubMed
Kozin, ED, Lehmann, A, Carter, M, Hight, E, Cohen, M, Nakajima, HH et al. Thermal effects of endoscopy in a human temporal bone model: implications for endoscopic ear surgery. Laryngoscope 2014;124:E332–910.1002/lary.24666CrossRefGoogle Scholar
Ito, T, Kubota, T, Takagi, A, Watanabe, T, Futai, K, Furukawa, T et al. Safety of heat generated by endoscope light sources in simulated transcanal endoscopic ear surgery. Auris Nasus Larynx 2016;43:501–610.1016/j.anl.2015.12.014CrossRefGoogle ScholarPubMed
Kahana, L, Rosenblith, WA, Galambos, R. Effect of temperature change on round-window response in the hamster. Am J Physiol 1950;163:213–2310.1152/ajplegacy.1950.163.2.213CrossRefGoogle ScholarPubMed
Aksoy, F, Dogan, R, Ozturan, O, Eren, SB, Veyseller, B, Gedik, O. Thermal effects of cold light sources used in otologic surgery. Eur Arch Otorhinolaryngol 2015;272:2679–8710.1007/s00405-014-3202-4CrossRefGoogle ScholarPubMed
Bottrill, I, Perrault, DF Jr, Poe, D. In vitro and in vivo determination of the thermal effect of middle ear endoscopy. Laryngoscope 1996;106:213–1610.1097/00005537-199602000-00020CrossRefGoogle ScholarPubMed
Turner, MT, Nayak, S, Kuhn, M, Roehm, PC. The effects of dexamethasone and acyclovir on a cell culture model of delayed facial palsy. Otol Neurotol 2014;35:712–1810.1097/MAO.0000000000000231CrossRefGoogle ScholarPubMed
Tomazic, PV, Hammer, GP, Gerstenberger, C, Koele, W, Stammberger, H. Heat development at nasal endoscopes' tips: danger of tissue damage? A laboratory study. Laryngoscope 2012;122:1670–310.1002/lary.23339CrossRefGoogle Scholar
Das, A, Mitra, S, Agarwal, P, Sengupta, A. Prolonged intra-operative thermal exposure in endoscopic ear surgery: is it really safe? J Laryngol Otol 2020;134:727–3110.1017/S0022215120001449CrossRefGoogle ScholarPubMed
McCallum, R, McColl, J, Iyer, A. The effect of light intensity on image quality in endoscopic ear surgery. Clin Otolaryngol 2018;43:1266–7210.1111/coa.13139CrossRefGoogle ScholarPubMed
Sandhu, H, Turner, R, Pozo, JL. No smoke without fire--simple recommendations to avoid arthroscopic burns. Knee 2002;9:341–610.1016/S0968-0160(02)00042-XCrossRefGoogle ScholarPubMed
Bellina, JH, Haas, M. Cold light sources. Are they really cold? J Reprod Med 1984;29:275–7Google ScholarPubMed
Hensman, C, Hanna, GB, Drew, T, Moseley, H, Cuschieri, A. Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables. Surg Endosc 1998;12:335–710.1007/s004649900665CrossRefGoogle ScholarPubMed
MacKeith, SA, Frampton, S, Pothier, DD. Thermal properties of operative endoscopes used in otorhinolaryngology. J Laryngol Otol 2008;122:711–1410.1017/S0022215107000734CrossRefGoogle ScholarPubMed
Nelson, JJ, Goyal, P. Temperature variations of nasal endoscopes. Laryngoscope 2011;121:273–810.1002/lary.21367CrossRefGoogle ScholarPubMed
Lewis, T, Levin, M, Sommer, DD. Too hot to handle--quantifying temperature variations in the nasal endoscope ocular assembly and light post. Am J Rhinol Allergy 2020;34:262–810.1177/1945892419892182CrossRefGoogle ScholarPubMed
Ozturan, O, Dogan, R, Eren, SB, Aksoy, F. Intraoperative thermal safety of endoscopic ear surgery utilizing a holder. Am J Otolaryngol 2018;39:585–9110.1016/j.amjoto.2018.07.001CrossRefGoogle ScholarPubMed