Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T09:41:32.341Z Has data issue: false hasContentIssue false

Role of cyclins D1 and D3 in vestibular schwannoma

Published online by Cambridge University Press:  13 July 2015

J Jabbour
Affiliation:
University of Notre Dame Australia School of Medicine, Sydney, New South Wales, Australia
P Earls
Affiliation:
Department of Anatomical Pathology, SydPath, Sydney, New South Wales, Australia
N Biggs
Affiliation:
Department of Otorhinolaryngology, St Vincent's Clinic, Sydney, New South Wales, Australia
G Gracie
Affiliation:
Department of Anatomical Pathology, SydPath, Sydney, New South Wales, Australia
P Fagan
Affiliation:
Department of Otorhinolaryngology, St Vincent's Clinic, Sydney, New South Wales, Australia
R Bova*
Affiliation:
University of Notre Dame Australia School of Medicine, Sydney, New South Wales, Australia Department of Otorhinolaryngology, St Vincent's Clinic, Sydney, New South Wales, Australia
*
Address for correspondence: Dr Ron Bova, St Vincent's Clinic, Suite 1003, 438 Victoria Street, Darlinghurst, Sydney 2010, Australia Fax: 61-2-8382-6091 E-mail: [email protected]

Abstract

Background:

Vestibular schwannomas in younger patients have been observed to be larger in size and grow more quickly.

Objective:

This study aimed to evaluate the expression of three important cell cycle proteins, cyclin D1, cyclin D3 and Ki-67, in vestibular schwannoma patients separated into two age groups: ≤40 years or >40 years.

Method:

Immunohistochemical detection of cyclin D1, cyclin D3 and Ki-67 was undertaken in 180 surgically resected vestibular schwannomas.

Results:

The proliferation index of vestibular schwannomas was statistically higher in the ≤40 years age group compared to that in the >40 years age group (mean of 4.52 vs 3.27, respectively; p = 0.01). Overexpression of cyclin D1 and cyclin D3 was found in 68 per cent and 44 per cent of tumours, respectively.

Conclusion:

There was an increased Ki-67 proliferation index in the younger age group that appears to correlate with clinical behaviour. Vestibular schwannomas in both age groups show increased expression of cyclin D1 and cyclin D3.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kasantikul, V, Netsky, MG, Glasscock, ME 3rd, Hays, JW. Acoustic neurilemmoma. Clinicoanatomical study of 103 patients. J Neurosurg 1980;52:2835Google Scholar
2Erickson, LS, Sorenson, GD, McGavran, MH. A review of 140 acoustic neurinomas (neurilemmoma). Laryngoscope 1965;75:601–27CrossRefGoogle ScholarPubMed
3Martuza, RL, Ojemann, RG. Bilateral acoustic neuromas: clinical aspects, pathogenesis, and treatment. Neurosurgery 1982;10:112CrossRefGoogle ScholarPubMed
4Baldwin, D, King, TT, Chevretton, E, Morrison, AW. Bilateral cerebellopontine angle tumors in neurofibromatosis type 2. J Neurosurg 1991;74:910–15Google Scholar
5Neff, BA, Welling, DB, Akhmametyeva, E, Chang, LS. The molecular biology of vestibular schwannomas: dissecting the pathogenic process at the molecular level. Otol Neurotol 2006;27:197208Google Scholar
6Xiao, GH, Gallagher, R, Shetler, J, Skele, K, Altomare, DA, Pestell, RG et al. The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 2005;25:2384–94Google Scholar
7Aarhus, M, Bruland, O, Saetran, HA, Mork, SJ, Lund-Johansen, M, Knappskog, PM. Global gene expression profiling and tissue microarray reveal novel candidate genes and down-regulation of the tumor suppressor gene CAV1 in sporadic vestibular schwannomas. Neurosurgery 2010;67:9981019; discussion 1019CrossRefGoogle ScholarPubMed
8Bartkova, J, Lukas, J, Strauss, M, Bartek, J. Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 1995;10:775–8Google ScholarPubMed
9Han, EK, Lim, JT, Arber, N, Rubin, MA, Xing, WQ, Weinstein, IB. Cyclin D1 expression in human prostate carcinoma cell lines and primary tumors. Prostate 1998;35:95101Google Scholar
10Jares, P, Fernandez, PL, Campo, E, Nadal, A, Bosch, F, Aiza, G et al. PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res 1994;54:4813–17Google ScholarPubMed
11Leach, FS, Elledge, SJ, Sherr, CJ, Willson, JK, Markowitz, S, Kinzler, KW et al. Amplification of cyclin genes in colorectal carcinomas. Cancer Res 1993;53:1986–9Google Scholar
12Oyama, T, Kashiwabara, K, Yoshimoto, K, Arnold, A, Koerner, F. Frequent overexpression of the cyclin D1 oncogene in invasive lobular carcinoma of the breast. Cancer Res 1998;58:2876–80Google Scholar
13Seto, M, Yamamoto, K, Iida, S, Akao, Y, Utsumi, KR, Kubonishi, I et al. Gene rearrangement and overexpression of PRAD1 in lymphoid malignancy with t(11;14)(q13;q32) translocation. Oncogene 1992;7:1401–6Google Scholar
14Sonoki, T, Harder, L, Horsman, DE, Karran, L, Taniguchi, I, Willis, TG et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood 2001;98:2837–44CrossRefGoogle Scholar
15Donnellan, R, Chetty, R. Cyclin D1 and human neoplasia. Mol Pathol 1998;51:17Google Scholar
16Doglioni, C, Chiarelli, C, Macri, E, Dei Tos, AP, Meggiolaro, E, Dalla Palma, P et al. Cyclin D3 expression in normal, reactive and neoplastic tissues. J Pathol 1998;185:159–663.0.CO;2-0>CrossRefGoogle ScholarPubMed
17Gerdes, J, Schwab, U, Lemke, H, Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 1983;31:1320CrossRefGoogle ScholarPubMed
18Hunter, T, Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 1994;79:573–82Google Scholar
19Sagol, O, Tuna, B, Coker, A, Karademir, S, Obuz, F, Astarcioglu, H et al. Immunohistochemical detection of pS2 protein and heat shock protein-70 in pancreatic adenocarcinomas. Relationship with disease extent and patient survival. Pathol Res Pract 2002;198:7784CrossRefGoogle ScholarPubMed
20Xiong, Y, Connolly, T, Futcher, B, Beach, D. Human D-type cyclin. Cell 1991;65:691–9Google Scholar
21Lassaletta, L, Del Rio, L, Torres-Martin, M, Rey, JA, Patron, M, Madero, R et al. Cyclin D1 expression and facial function outcome after vestibular schwannoma surgery. Otol Neurotol 2011;32:136–40Google Scholar
22Lassaletta, L, Patron, M, Del Rio, L, Alfonso, C, Maria Roda, J, Rey, JA et al. Cyclin D1 expression and histopathologic features in vestibular schwannomas. Otol Neurotol 2007;28:939–41Google Scholar
23Neff, BA, Oberstien, E, Lorenz, M, Chaudhury, AR, Welling, DB, Chang, LS. Cyclin D(1) and D(3) expression in vestibular schwannomas. Laryngoscope 2006;116:423–6CrossRefGoogle Scholar
24Vielh, P, Chevillard, S, Mosseri, V, Donatini, B, Magdelenat, H. Ki67 index and S-phase fraction in human breast carcinomas. Comparison and correlations with prognostic factors. Am J Clin Pathol 1990;94:681–6Google Scholar
25Bartkova, J, Lukas, J, Muller, H, Lutzhoft, D, Strauss, M, Bartek, J. Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 1994;57:353–61Google Scholar
26Chen, CS, Lee, CH, Hsieh, CD, Ho, CT, Pan, MH, Huang, CS et al. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat 2011;125:7387CrossRefGoogle ScholarPubMed
27Liu, X, Minin, V, Huang, Y, Seligson, DB, Horvath, S. Statistical methods for analyzing tissue microarray data. J Biopharm Stat 2004;14:671–85CrossRefGoogle ScholarPubMed
28Pan, J, Tang, T, Xu, L, Lu, JJ, Lin, S, Qiu, S et al. Prognostic significance of expression of cyclooxygenase-2, vascular endothelial growth factor, and epidermal growth factor receptor in nasopharyngeal carcinoma. Head Neck 2013;35:1238–47CrossRefGoogle ScholarPubMed
29Aguiar, PH, Tatagiba, M, Dankoweit-Timpe, E, Matthies, C, Samii, M, Ostertag, H. Proliferative activity of acoustic neurilemomas without neurofibromatosis determined by monoclonal antibody MIB 1. Acta Neurochir (Wien) 1995;134:35–9Google Scholar
30Lutchman, M, Rouleau, GA. Neurofibromatosis type 2: a new mechanism of tumor suppression. Trends Neurosci 1996;19:373–7CrossRefGoogle ScholarPubMed
31Manchanda, PK, Jones, GN, Lee, AA, Pringle, DR, Zhang, M, Yu, L et al. Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors. Oncogene 2013;32:3491–9Google Scholar
32McClatchey, AI, Fehon, RG. Merlin and the ERM proteins–regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 2009;19:198206Google Scholar
33LaJeunesse, DR, McCartney, BM, Fehon, RG. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J Cell Biol 1998;141:1589–99Google Scholar
34Kissil, JL, Johnson, KC, Eckman, MS, Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002;277:10394–9Google Scholar
35Okada, T, Lopez-Lago, M, Giancotti, FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 2005;171:361–71Google Scholar
36Bretscher, A, Edwards, K, Fehon, RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002;3:586–99Google Scholar
37Li, Q, Nance, MR, Kulikauskas, R, Nyberg, K, Fehon, R, Karplus, PA et al. Self-masking in an intact ERM-merlin protein: an active role for the central alpha-helical domain. J Mol Biol 2007;365:1446–59CrossRefGoogle Scholar
38Pearson, MA, Reczek, D, Bretscher, A, Karplus, PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000;101:259–70CrossRefGoogle ScholarPubMed
39Shimizu, T, Seto, A, Maita, N, Hamada, K, Tsukita, S, Hakoshima, T et al. Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem 2002;277:10332–6Google Scholar
40Shrestha, Y, Schafer, EJ, Boehm, JS, Thomas, SR, He, F, Du, J et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 2012;31:3397–408CrossRefGoogle ScholarPubMed
41Xiao, GH, Chernoff, J, Testa, JR. NF2: the wizardry of merlin. Genes Chromosomes Cancer 2003;38:389–99Google Scholar
42Wu, H, Chen, Y, Wang, ZY, Li, W, Li, JQ, Zhang, L et al. Involvement of p21 (waf1) in merlin deficient sporadic vestibular schwannomas. Neuroscience 2010;170:149–55Google Scholar
43Diehl, JA, Cheng, M, Roussel, MF, Sherr, CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998;12:3499–511CrossRefGoogle ScholarPubMed
44Bartkova, J, Zemanova, M, Bartek, J. Abundance and subcellular localisation of cyclin D3 in human tumours. Int J Cancer 1996;65:323–73.0.CO;2-1>CrossRefGoogle ScholarPubMed
45Fuentealba, L, Schworer, C, Schroering, A, Rahmatullah, M, Carey, DJ. Heregulin and forskolin-induced cyclin D3 expression in Schwann cells: role of a CCAAT promoter element and CCAAT enhancer binding protein. Glia 2004;45:238–48Google Scholar
46Spofford, LS, Abel, EV, Boisvert-Adamo, K, Aplin, AE. Cyclin D3 expression in melanoma cells is regulated by adhesion-dependent phosphatidylinositol 3-kinase signaling and contributes to G1-S progression. J Biol Chem 2006;281:25644–51CrossRefGoogle ScholarPubMed
47Charabi, S. Acoustic neuroma/vestibular schwannoma in vivo and in vitro growth models. A clinical and experimental study. Acta Otolaryngol Suppl 1997;530:127Google Scholar
48Stangerup, SE, Tos, M, Caye-Thomasen, P, Tos, T, Klokker, M, Thomsen, J. Increasing annual incidence of vestibular schwannoma and age at diagnosis. J Laryngol Otol 2004;118:622–7Google Scholar
49Shoker, BS, Jarvis, C, Davies, MP, Iqbal, M, Sibson, DR, Sloane, JP. Immunodetectable cyclin D(1)is associated with oestrogen receptor but not Ki67 in normal, cancerous and precancerous breast lesions. Br J Cancer 2001;84:1064–9CrossRefGoogle Scholar