Published online by Cambridge University Press: 23 March 2010
Exposure to cisplatin leads to cochlear cell death by apoptosis; these changes are most marked on the seventh day after exposure. Heat shock proteins are induced in inner ear cells in response to a variety of stimuli. This study examined the role of heat shock protein 70 in cisplatin-induced cochlear cell death.
Fifty-six Sprague–Dawley rats were involved. Some were injected with cisplatin (5 mg/kg body weight), some with cisplatin plus the caspase inhibitor Z-Asp(OMe)-Glu(OMe)-Val-Asp(OME)-fluoromethylketone (5 mg/kg body weight) and others were left as controls (being injected only with saline). Seven days later, we examined the expression of heat shock protein 70 and several other apoptosis-related proteins within the rat cochlear cells; we also assessed total superoxide dismutase activity, auditory brainstem response and auditory steady state response.
Seven days after cisplatin injection, significantly increased expression of heat shock protein 70 was found within the rat cochleae. This correlated with increased executioner caspase levels, total superoxide dismutase activity and auditory brainstem response thresholds, and a significant elevation in auditory steady state response thresholds. Inhibition of caspase-3 activity significantly reduced cochlear heat shock protein 70 expression and total superoxide dismutase activity, and improved auditory brainstem response and auditory steady state response thresholds.
Seven days after cisplatin exposure, we found disturbances of the cochlear cellular machinery involving heat shock protein 70, other apoptotic proteins and total superoxide dismutase.