Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:03:23.220Z Has data issue: false hasContentIssue false

Correlation between subjective and objective voice analysis pre- and post-shift among teleoperators in a tertiary hospital

Published online by Cambridge University Press:  29 November 2022

M Rahman
Affiliation:
Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
J Saniasiaya*
Affiliation:
Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
M Z Abu Bakar
Affiliation:
Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
*
Author for correspondence: Dr J Saniasiaya, Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia E-mail: [email protected]

Abstract

Objective

Teachers and singers have been extensively studied and are shown to have a greater tendency to voice disorders. This study aimed to investigate the correlation between subjective and objective voice analysis pre- and post-shift among teleoperators in a tertiary hospital.

Methods

This was a prospective cohort study. Each patient underwent pre- and post-shift voice analysis.

Results

Among 42 teleoperators, 28 patients (66.7 per cent) completed all the tests. Female predominance (62 per cent) was noted, with a mean age of 40 years. Voice changes during working were reported by 48.1 per cent. Pre- and post-shift maximum phonation time (p < 0.018) and Voice Handicap Index-10 (p < 0.011) showed significant results with no correlation noted between subjective and objective assessment.

Conclusion

Maximum phonation time and Voice Handicap Index-10 are good voice assessment tools. The quality of evidence is inadequate to recommend ‘gold standard’ voice assessment until a better-quality study has been completed.

Type
Main Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr J Saniasiaya takes responsibility for the integrity of the content of the paper

References

Björn, F. Voice disorders and occupation. Logopedics Phoniatr Vocol 2009;21:712Google Scholar
Nair, CB, Nayak, S, Maruthy, S, Krishnan, JB, Devadas, U. Prevalence of voice problems, self-reported vocal symptoms and associated risk factors in call center operators (CCOs): a systematic review. J Voice 2021;S0892Google ScholarPubMed
Cutiva, LC. Association between occupational voice use and occurrence of voice disorders: a meta-analysis. Areté 2018;18:1–010.33881/1657-2513.art18201CrossRefGoogle Scholar
Amorim, GO, Bommarito, S, Kanashiro, CA, Chiari, BM. The vocal behavior of telemarketing operators before and after a working day. J Soc Bras Fonoaudiol 2011;23:170–610.1590/S2179-64912011000200015CrossRefGoogle ScholarPubMed
Ong, FM, Husna Nik Hassan, NF, Azman, M, Sani, A, Mat Baki, M. Validity and reliability study of Bahasa Malaysia Version of Voice Handicap Index-10. J Voice 2019;33:1758110.1016/j.jvoice.2018.01.015CrossRefGoogle ScholarPubMed
Vaz-Freitas, S, Pestana, PM, Almeida, V, Ferreira, A. Acoustic analysis of voice signal: comparison of four applications software. Biomed Sig Pro Contr 2018;40:318–2310.1016/j.bspc.2017.09.031CrossRefGoogle Scholar
Jones, K, Sigmon, J, Hock, L, Nelson, E, Sullivan, M, Ogren, F. Prevalence and risk factors for voice problems among telemarketers. Arch Otolaryngol Head Neck Surg 2002;128:571–710.1001/archotol.128.5.571CrossRefGoogle ScholarPubMed
Rechenberg, L, Goulart, BN, Roithmann, R. Impact of call center work in subjective voice symptoms and complaints: an analytic study. J Soc Bras Fonoaud 2011;23:301–710.1590/S2179-64912011000400003CrossRefGoogle ScholarPubMed
Schindler, A, Mozzanica, F, Vedrody, M, Maruzzi, P, Ottaviani, F. Correlation between the Voice Handicap Index and voice measurements in four groups of patients with dysphonia. Otolaryngol Head Neck Surg 2009;141:762–910.1016/j.otohns.2009.08.021CrossRefGoogle ScholarPubMed
Girardi, BB, Marchand, DL, Moreira, TD, Drummond, RL, Cassol, M. Relationship between working conditions and voice symptoms among operators of a model call center. Audiol Commun Res 2017;22:e1738Google Scholar
Wheeler, KM, Collins, SP, Sapienza, CM. The relationship between VHI scores and specific acoustic measures of mildly disordered voice production. J Voice 2006;20:308–1710.1016/j.jvoice.2005.03.006CrossRefGoogle ScholarPubMed
Woisard, V, Bodin, S, Yardeni, E, Puech, M. The voice handicap index: correlation between subjective patient response and quantitative assessment of voice. J Voice 2007;21:623–3110.1016/j.jvoice.2006.04.005CrossRefGoogle ScholarPubMed
Niebudek-Bogusz, E, Woznicka, E, Zamyslowska-Szmytke, E, Sliwinska-Kowalska, M. Correlation between acoustic parameters and Voice Handicap Index in dysphonic teachers. Folia Phoniatr Logopaed 2010;62:556010.1159/000239064CrossRefGoogle ScholarPubMed
Oliveira, S, Raize, T, Algodoal, J, Moreira-Ferreira, AE, Marchion, MQ. A voz no Telesserviço. In: Oliveira, IB, Almeida, AAF, Raize, T. Voz Profissional – Produção Científica Da Fonoaudiologia Brasileira (CD-ROM). São Paulo: Sociedade Brasileira de Fonoaudiologia, 2008Google Scholar
Yiu, EM, Chan, RM. Effect of hydration and vocal rest on the vocal fatigue in amateur karaoke singers. J Voice 2003;17:216–2710.1016/S0892-1997(03)00038-9CrossRefGoogle ScholarPubMed
Roy, N, Merrill, RM, Thibeault, S, Parsa, RA, Gray, SD, Smith, EM. Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear sGoogle Scholar
Titze, I. Choir warm-ups: how effective are they? J Sing 2000;56:31–2Google Scholar