Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-07T01:46:38.589Z Has data issue: false hasContentIssue false

Comparison of electrically evoked stapedial reflexes in patients with cochlear implants surgically implanted using Veria and posterior tympanotomy approaches

Published online by Cambridge University Press:  05 February 2024

A Yathiraj
Affiliation:
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
P Manjula
Affiliation:
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
C Geetha
Affiliation:
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
P Jawahar Antony*
Affiliation:
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
Megha
Affiliation:
Department of Audiology, All India Institute of Speech and Hearing, Mysuru, India
*
Corresponding author: P Jawahar Antony; Email: [email protected]

Abstract

Objective

The study aimed to compare ipsilateral and contralateral electrically evoked stapedial reflex thresholds in children with a unilateral cochlear implant surgically implanted either through Veria or posterior tympanotomy approaches.

Methods

Forty-nine children using cochlear implants were studied, of whom 27 underwent the Veria approach and 22 underwent the posterior tympanotomy approach. The electrically evoked stapedius reflex thresholds were measured ipsilaterally and contralaterally by stimulating four equally spaced electrodes.

Results

The ipsilateral electrically evoked stapedius reflex threshold was absent in all four electrodes in the children implanted using the Veria approach. However, the ipsilateral electrically evoked stapedius reflex threshold was present in 70 per cent of the children implanted using the posterior tympanotomy approach. The contralateral electrically evoked stapedius reflex threshold was present in most of the children for both surgical approaches.

Conclusion

The presence of the ipsilateral electrically evoked stapedius reflex threshold varies depending on the surgical technique used for cochlear implantation. However, contralateral reflexes are present in the majority of children using cochlear implants, irrespective of the surgical approach.

Type
Main Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

P Jawahar Antony takes responsibility for the integrity of the content of the paper

References

Dawson, PW, Skok, M, Clark, GM. The effect of loudness imbalance between electrodes in cochlear implant users. Ear Hear 1997;18:156–65Google Scholar
Smoorenburg, GF, Willeboer, C, van Dijk, JE. Speech perception in Nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurotol 2002;7:335–47Google Scholar
Busby, PA, Au, A. Categorical loudness scaling in cochlear implant recipients. Int J Audiol 2017;56:862–9CrossRefGoogle ScholarPubMed
Gordon, KA, Papsin, BC, Harrison, RV. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear 2004;25:447–63CrossRefGoogle Scholar
Wolfe, J, Schafer, E. Programming Cochlear Implants. San Diego: Plural Publishing, 2015Google Scholar
Mertes, J, Chinnici, MA. Cochlear implants - considerations in programming for the pediatric population. Audiology Online, 13 February 2006Google Scholar
Hodges, AV, Balkany, TJ, Ruth, RA, Lambert, PR, Dolan-Ash, S, Schloffman, JJ. Electrical middle ear muscle reflex: use in cochlear implant programming, Otolaryngol Head Neck Surg 1997;117:255–61Google Scholar
Jerger, J, Fifer, R, Jenkins, H, Mecklenburg, D. Stapedius reflex to electrical stimulation in a patient with a cochlear implant. Ann Otol Rhinol Laryngol 1986;95:151–7CrossRefGoogle Scholar
Jerger, J, Oliver, TA, Chmiel, RA. Prediction of dynamic range from stapedius reflex in cochlear implant patients. Ear Hear 1988;9:48CrossRefGoogle ScholarPubMed
Lorens, A, Walkowiak, A, Piotrowska, A, Skarzynski, H, Anderson, I. ESRT and MCL correlations in experienced paediatric cochlear implant users. Cochlear Implants Int 2004;5:2837Google Scholar
Rao, A, Yathitaj, A. Electrically Evoked Stapedial Reflex Threshold Levels: Relationship with Behavioural ‘T’ and ‘C’ levels in Cochlear Implants Users [Master's dissertation]. Mysore: University of Mysore, 2009Google Scholar
Stephan, K, Welzl-Muller, K. Post-operative stapedius reflex tests with simultaneous loudness scaling in patients supplied with cochlear implants. Audiology 2009;9:1318Google Scholar
Spivak, LG, Chute, PM. The relationship between electrical acoustic reflex thresholds and behavioral comfort levels in children and adult cochlear implant patients. Ear Hear 1994;15:184–92CrossRefGoogle ScholarPubMed
de Andrade, KCL, Leal, MC, Muniz, LF, Menezes, PL, Albuquerque, KMG, Carnaúba, ALT. The importance of electrically evoked stapedial reflex in cochlear implant. Braz J Otorhinolaryngol 2014;80:6877Google Scholar
de Andrade, KCL, Muniz, LF, Menezes, PDL, Neto, SDSC, Carnauba, ATL, Leal, MDC. The value of electrically evoked stapedius reflex in determining the maximum comfort level of a cochlear implant. J Am Acad Audiol 2018;29:292–9Google Scholar
Allum, JHL, Greisiger, R, Probst, R. Relationship of intraoperative electrically evoked stapedius reflex thresholds to maximum comfortable loudness levels of children with cochlear implants. Int J Audiol 2002;41:93–9CrossRefGoogle ScholarPubMed
Asal, S, Sobhy, OA, Nooman, M. The relationship between the electrical stapedial muscle reflex threshold and electrical and behavioral measures in cochlear implant patients. Egypt J Otolaryngol 2016;32:4952Google Scholar
Raghunandhan, S, Ravikumar, A, Kameswaran, M, Mandke, K, Ranjith, R. A clinical study of electrophysiological correlates of behavioural comfort levels in cochlear implantees. Cochlear Implants Int 2014;15:145–60CrossRefGoogle ScholarPubMed
Wolfe, J, Kasulis, H. Relationships among objective measures and speech perception in adult users of the HiResolution Bionic Ear. Cochlear Implants Int 2008;9:7081Google Scholar
Bresnihan, M, Norman, G, Scott, F, Viani, L. Measurement of comfort levels by means of electrical stapedial reflex in children. Arch Otolaryngol Head Neck Surg 2001;127:963–6Google Scholar
Wolfe, J, Gilbert, M, Schafer, E, Litvak, LM, Spahr, AJ, Saoji, A et al. Optimizations for the electrically-evoked stapedial reflex threshold measurement in cochlear implant recipients. Ear Hear 2017;38:255–61CrossRefGoogle ScholarPubMed
Jako GJ, . The posterior route to the middle ear: posterior tympanotomy. Laryngoscope 1977;77 : 306–16CrossRefGoogle Scholar
Kiratzidis, T, Arnold, W, Iliades, T. Veria operation updated. I. The trans-canal wall cochlear implantation. ORL J Otorhinolaryngol Relat Spec 2002;64:406–12CrossRefGoogle ScholarPubMed
Kronenberg, J, Migirov, L, Dagan, T. Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol 2004;115:283–5Google Scholar
Bruijnzeel, H, Draaisma, K, van Grootel, R, Stegeman, I, Topsakal, V, Grolman, W. Systematic review on surgical outcomes and hearing preservation for cochlear implantation in children and adults. Otolaryngol Head Neck Surg 2016;154:586–96CrossRefGoogle ScholarPubMed
Zernotti, ME, Suárez, A, Slavutsky, V, Nicenboim, L, Di Gregorio, MF, Soto, JA. Comparison of complications by technique used in cochlear implants. Acta Otorrinolaringol Esp 2012;63:327–31Google Scholar
Kronenberg, J, Baumgartner, W, Migirov, L, Dagan, T, Hildesheimer, M. The suprameatal approach: an alternative surgical approach to cochlear implantation. Otol Neurotol 2004;25:41–5CrossRefGoogle ScholarPubMed
Postelmans, JT, Grolman, W, Tange, RA, Stokroos, RJ. Comparison of two approaches to the surgical management of cochlear implantation. Laryngoscope 2009;119:1571–8Google Scholar
Jerger, J. Clinical experience with impedance audiometry. Arch Otolaryngol 1970;92:311–24CrossRefGoogle ScholarPubMed
All India Institute of Speech and Hearing. Ethical Guidelines for Bio-behavioural Research Involving Human Subjects. Mysore: All India Institute of Speech and Hearing, 2009Google Scholar
Sim, J, Wright, CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 2005;85:257–68CrossRefGoogle ScholarPubMed
Hausler, R. Cochlear implantation without mastoidectomy: the pericanal electrode insertion technique. Acta Otolaryngol 2002;122:715–19Google Scholar
Guevara, N, Bailleux, S, Santini, J, Castillo, L, Gahide, I. Cochlear implantation surgery without posterior tympanotomy: can we still improve it? Acta Otolaryngol 2003;130:3741CrossRefGoogle Scholar
Caner, G, Olgun, L, Gültekin, G, Muzaffe, B. Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold. Otol Neurotol 2007;28:637–40Google ScholarPubMed
Hodges, AV, Butts, SL, King, JE. Electrically-evoked stapedial reflexes: utility in cochlear implant patients. In: Cullington, HE, ed. Cochlear Implants: Objective Measures. London: Whurr Publishers, 2003;8195Google Scholar
Opie, JM, Allum, JH, Probst, R. Evaluation of electrically elicited stapedius reflex threshold measured through three different cochlear implant systems. Am J Otol 1997;18:S107–8Google ScholarPubMed
Spivak, LG, Chute, PM, Popp, AL, Parisier, SC. Programming the cochlear implant based on electrical acoustic reflex thresholds: patient performance. Laryngoscope 1994;104:1225–30CrossRefGoogle ScholarPubMed
Sagalovich, BM, Tsukanova, VN, Drozdov, AA. Impedance measurements of middle ear acoustic reflex and its value for differential diagnosis of hearing disorders [in Russian]. Vestn Otorinolaringol 1977;2:39Google Scholar
Gelfand, SA. The contralateral acoustic-reflex threshold. In: Silman, S, ed. The Acoustic Reflex; Basic Principles and Clinical Applications. Orlando: Academic Press, 1984Google Scholar
Gonay, P, Dutillieux, D, Metz, T. The dynamics of muscle contraction vary depending on age [in French]. Rev Electrodiag Ther 1974;11:1722Google Scholar
Kosaner, J, Anderson, I, Turan, Z, Deibl, M. The use of ESRT in fitting children with cochlear implants. J Int Adv Otol 2009;5:70–9Google Scholar
Vallejo, LA, Herrero, D, Sánchez, C, Sánchez, E, Gil-Carcedo, E, Gil-Carcedo, LM. Inverted acoustic reflex: an analysis of its morphological characteristics in different physiological and pathological situations [in Spanish]. Acta Otorrinolaringol Esp 2009;60:238–52Google Scholar