Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T07:44:02.974Z Has data issue: false hasContentIssue false

Clinical and biological acceptance of a fibrocollagen-coated mersylene patch for tracheal repair in growing dogs

Published online by Cambridge University Press:  23 June 2014

F Villegas-Alvarez
Affiliation:
Laboratorio de Cirugía Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
B Pérez-Guillé
Affiliation:
Laboratorio de Cirugía Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
R E Soriano-Rosales
Affiliation:
Laboratorio de Cirugía Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
M A Jiménez-Bravo-Luna
Affiliation:
Laboratorio de Cirugía Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
A Gonzalez-Maciel
Affiliation:
Laboratorio de Microscopía Electrónica, Instituto Nacional de Pediatría, Mexico City, Mexico
S L Elizalde-Velazquez
Affiliation:
Departamento de Radiología, Instituto Nacional de Pediatría, Mexico City, Mexico
R Aguirre-Hernández
Affiliation:
Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
A Ramos-Morales
Affiliation:
Laboratorio de Microscopía Electrónica, Instituto Nacional de Pediatría, Mexico City, Mexico
R Reynoso-Robles
Affiliation:
Laboratorio de Microscopía Electrónica, Instituto Nacional de Pediatría, Mexico City, Mexico
J F González-Zamora*
Affiliation:
Laboratorio de Cirugía Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
*
Address for correspondence: Dr Jose Francisco González-Zamora, Los Angeles No. 15, Colonia Olímpica, Delegación Coyoacán CP 04710, México DF, México E-mail: [email protected]

Abstract

Background:

Collagen-covered prostheses can be used as a non-circumferential segmental tracheal replacement. However, the applicability of these implants in young subjects has not yet been reported.

Methods:

In this experimental, longitudinal study, dogs aged 29–32 days underwent limited segmental tracheal replacement with a polyester prosthesis or were allocated to a control, untreated group. The dogs were evaluated clinically, endoscopically and tomographically for up to one year.

Results:

Although there was evidence of tracheal growth in the experimental group, tomographic measurements were significantly smaller in this group than in the control group throughout the observation period. At the end of the study, there was no evidence of implant rejection, stenosis or collapse. Normal respiratory epithelium had grown across the implanted membrane in the experimental group.

Conclusion:

The homologous collagen mersylene membrane allowed for limited structural tracheal growth and was functionally integrated into the segmented tracheal wall in growing dogs.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Delgado-Pecellin, I, González-Valencia, JP, Machuca-Contreras, M, Pineda-Mantecón, M. Clinic, diagnosis and treatment of tracheal stenosis [in Spanish]. An Pediatr (Barc) 2009;70:443–8Google Scholar
2Krajc, T, Janik, M, Benej, R, Lucenic, M, Majer, I, Demian, J et al. Urgent segmental resection as the primary strategy in management of benign tracheal stenosis. A single center experience in 164 consecutive cases. Interact Cardiovasc Thorac Surg 2009;9:983–9CrossRefGoogle ScholarPubMed
3Jungebluth, P, Alici, E, Baiguera, S, Le Blanc, K, Blomberg, P, Bozóky, B et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 2011;378:19972004Google Scholar
4Griscom, NT, Wohl, ME. Dimensions of the growing trachea related to age and gender. AJR Am J Roentgenol 1986;146:233–7Google Scholar
5Villegas-Álvarez, F, González-Zamora, JF, González-Maciel, A, Soriano-Rosales, R, Pérez-Guille, B, Padilla-Sánchez, L et al. Fibrocollagen-covered prosthesis for a noncircumferential segmental tracheal replacement. J Thorac Cardiovasc Surg 2010;139:32–7Google Scholar
6National Institutes of Health. Guide for the Care and Use of Laboratory Animals, revised edn (NIH publication no. 85-23). Washington, DC: US Government Printing Office, 1985Google Scholar
7Brown, H, Prescott, R. Applied Mixed Models in Medicine, 2nd edn.Chichester: John Wiley & Sons, 2006Google Scholar
8R Development Core Team. A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2009Google Scholar
9Pinheiro, J, Bates, D, DebRoy, S, Sakar, D, R Development Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-96 (computer software), 2009Google Scholar
10Spybrook, J, Raudenbush, SW, Liu, X-F, Congdon, R, Martinez, A. Optimal Design for Longitudinal and Multilevel Research: Documentation for the “Optimal Design” Software, Version 1.76 (computer software and manual), 2008Google Scholar
11Kuriloff, DB, Fayad, JN. Tracheal autograft prefabrication using microfibrillar collagen and bone morphogenetic protein. Arch Otolaryngol Head Neck Surg 1996;122:1385–9Google Scholar
12De Ugarte, DA, Puapong, D, Roostaeian, J, Gillis, N, Fonkalsrud, EW, Atkinson, JB et al. Surgisis patch tracheoplasty in a rodent model for tracheal stenosis. J Surg Res 2003;112:65–9Google Scholar
13Gubbels, SP, Richardson, M, Trune, D, Bascom, DA, Wax, MK. Tracheal reconstruction with porcine small intestine submucosa in a rabbit model. Otolaryngol Head Neck Surg 2006;134:1028–35Google Scholar
14Gilbert, TW, Gilbert, S, Madden, M, Reynolds, SD, Badylak, SF. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann Thorac Surg 2008;86:967–74Google Scholar
15Omori, K, Nakamura, T, Kanemaru, S, Asato, R, Yamashita, M, Tanaka, S et al. Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 2005;114:429–33Google Scholar
16Kara, ME, Turan, E, Dabanoglu, I, Ocal, MK. Computed tomographic assessment of the trachea in the German shepherd dog. Ann Anat 2004;186;317–21CrossRefGoogle ScholarPubMed
17Nakanishi, R, Hashimoto, M, Yasumoto, K. Improved airway healing using basic fibroblast growth factor in a canine tracheal autotransplantation model. Ann Surg 1998;227:446–54Google Scholar
18Dodge-Khatami, A, Niessen, HW, Baidoshvili, A, van Gulik, TM, Klein, MG, Eijsman, L et al. Topical vascular endothelial growth factor in rabbit tracheal surgery: comparative effect on healing using various reconstruction materials and intraluminal stents. Eur J Cardiothorac Surg 2003;23:614Google Scholar
19Tan, Q, Steiner, R, Yang, L, Welti, M, Neuenschwander, P, Hillinger, S et al. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea. Eur J Cardiothorac Surg 2007;31:806–11CrossRefGoogle ScholarPubMed
20Sweeney, SM, DiLullo, G, Slater, SJ, Martinez, J, Iozzo, RV, Lauer-Fields, JL et al. Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 2003;278:30516–24Google Scholar
21Grillo, HC. Development of tracheal surgery: a historical review. Part 2: treatment of tracheal diseases. Ann Thorac Surg 2003;75:1039–47Google Scholar
22Jacobs, JP, Elliott, MJ, Haw, MP, Bailey, CM, Herberhold, C. Pediatric tracheal homograft reconstruction: a novel approach to complex tracheal stenoses in children. J Thorac Cardiovasc Surg 1996;112:1549–58CrossRefGoogle ScholarPubMed
23Grillo, HC, Wright, CD, Vlahakes, GJ, MacGillivray, TE. Management of congenital tracheal stenosis by means of slide tracheoplasty or resection and reconstruction, with long-term follow-up of growth after slide tracheoplasty. J Thorac Cardiovasc Surg 2002;123:145–52Google Scholar
24Blanchard, H, Brochu, P, Bensoussan, AL, Lagacé, G, Khan, AH. Tracheal growth after resection and anastomosis in puppies. J Pediatr Surg 1986;21:777–80CrossRefGoogle ScholarPubMed
25Othersen, HB Jr, Hebra, A, Tagle, EP. A new method of treatment for complete tracheal rings in an infant: endoscopic laser division and balloon dilatation. J Pediatr Surg 2000;35:262–4Google Scholar
26Koopman, JP, Bogers, AJ, Witsenburg, M, Lequin, MH, Tibboel, D, Hoeve, LJ. Slide tracheoplasty for congenital tracheal stenosis. J Pediatr Surg 2004;39:1923CrossRefGoogle ScholarPubMed
27Cheng, AT, Backer, CL, Holinger, LD, Dunham, ME, Mavroudis, C, Gonzalez-Crussi, F. Histopathologic changes after pericardial patch tracheoplasty. Arch Otolaryngol Head Neck Surg 1997;123:1069–72Google Scholar
28Dodge-Khatami, A, Nijdam, NC, Broekhuis, E, Von Rosenstiel, IA, Dahlem, PG, Hazekamp, MG. Carotid artery patch plasty as a last resort repair for long-segment congenital tracheal stenosis. J Thorac Cardiovasc Surg 2002;123:826–8Google Scholar