Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T16:12:29.045Z Has data issue: false hasContentIssue false

Tinnitus: impact on patients in relation to audiological findings

Published online by Cambridge University Press:  14 February 2022

T A Gabr*
Affiliation:
Audiovestibular Medicine Unit, Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
H F Alshabory
Affiliation:
Audiovestibular Medicine Unit, Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
M A Kotait
Affiliation:
Audiovestibular Medicine Unit, Otolaryngology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
*
Author for correspondence: Dr TA Gabr, Audiovestibular Medicine Unit, Otolaryngology Department, Faculty of Medicine, Kafrelsheikh University, Elgish Street, Kafr Elsheikh 33516, Egypt E-mail: [email protected] Fax: +2 047 321 4998

Abstract

Objective

Tinnitus is a common auditory disorder in which patients experience noise in the absence of an external source. It is a consequence of irreversible cochlear damage. This study examined the distortion product otoacoustic emissions and P300 components of event-related potentials.

Method

This study included a control group of 25 normal-hearing adults not complaining of tinnitus and a study group that consisted of 45 normal-hearing adults complaining of tinnitus. Measures included patient history, basic audiological evaluation, the Arabic version of Tinnitus Handicap Inventory, distortion product otoacoustic emissions testing and P300 recording.

Results

The study group showed significantly higher hearing thresholds at all frequencies as well as delayed latencies and reduced amplitude of P300. The Tinnitus Handicap Inventory showed mean scores of 35.2 ± 16.9, and the distortion product gram showed higher amplitudes in the control group.

Conclusion

Patients with tinnitus might have neural dysfunction at either peripheral or central levels of the auditory pathway.

Type
Main Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr T A Gabr takes responsibility for the integrity of the content of the paper

References

Leaver, AM, Seydell-Greenwald, A, Rauschecker, JP. Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 2016;334:4957CrossRefGoogle ScholarPubMed
Henry, JA, Zaugg, TL, Schechter, MA. Clinical guide for audiologic tinnitus management II: treatment. Am J Audiol 2005;14:4970CrossRefGoogle ScholarPubMed
McKee, GJ, Stephens, SD. An investigation of normally hearing subjects with tinnitus. Audiology 1992;31:313–710.3109/00206099209072919CrossRefGoogle ScholarPubMed
Plewnia, C, Reimold, M, Najib, A, Brehm, B, Reischl, G, Plontke, SK et al. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 2007;28:238–4610.1002/hbm.20270CrossRefGoogle ScholarPubMed
de Azevedo, AA, Figueiredo, RR, Penido, N. Tinnitus and event related potentials: a systematic review. Braz J Otorhinolaryngol 2020;86:119–26CrossRefGoogle Scholar
Weisz, N, Müller, S, Schlee, W, Dohrmann, K, Hartmann, T, Elbert, T. The neural code of auditory phantom perception. J Neurosci 2007;27:1479–84CrossRefGoogle ScholarPubMed
Bartnik, G, Hawley, ML, Rogowski, M, Raj-Koziak, D, Fabijanska, A, Formby, C. Distortion product otoacoustic emission levels and input/output-growth functions in normal-hearing individuals with tinnitus and/or hyperacusis. Semin Hear 2007;28:303–1810.1055/s-2007-990717CrossRefGoogle Scholar
Newman, CW, Jacobson, GP, Spitzer, JB. Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 1996;122:143–8CrossRefGoogle ScholarPubMed
Yetiser, S, Tosun, F, Satar, B, Arslanhan, M, Akcam, T, Ozkaptan, Y. The role of zinc in management of tinnitus. Auris Nasus Larynx 2002;29:329–3310.1016/S0385-8146(02)00023-8CrossRefGoogle ScholarPubMed
Jastreboff, PJ, Gray, WC, Gold, SL. Neurophysiological approach to tinnitus patients. Am J Otol 1996;17:236–40Google ScholarPubMed
Baguley, DM. Mechanisms of tinnitus. Br Med Bull 2002;63:19521210.1093/bmb/63.1.195CrossRefGoogle ScholarPubMed
Mohamad, N, Hoare, DJ, Hall, DA. The consequences of tinnitus and tinnitus severity on cognition: a review of the behavioural evidence. Hear Res 2016;332:19920910.1016/j.heares.2015.10.001CrossRefGoogle ScholarPubMed
Lin, HW, Furman, AC, Kujawa, SG, Liberman, MC. Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 2011;12:605–16CrossRefGoogle ScholarPubMed
Sergeyenko, Y., Lall, K., Liberman, M.C., Kujawa, S.G. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 2013;33:13686–9410.1523/JNEUROSCI.1783-13.2013CrossRefGoogle ScholarPubMed
Kujawa, SG, Liberman, MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 2009 11;29:14077–8510.1523/JNEUROSCI.2845-09.2009CrossRefGoogle Scholar
Furman, AC, Kujawa, SG, Liberman, MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 2013;110:577–86CrossRefGoogle ScholarPubMed
Ishak, WS, Zhao, F, Rajenderkumar, D, Arif, M. Measurement of subtle auditory deficit in tinnitus patients with normal audiometric thresholds using evoked otoacoustic emissions and threshold equalizing. Int Tinnitus 2013;18:3544Google ScholarPubMed
Ami, M, Abdullah, A, Awang, M, Liyab, B, Saim, L. Relation of distortion product otoacoustic emission with tinnitus. Laryngoscope 2009;118:712–1710.1097/MLG.0b013e318161e521CrossRefGoogle Scholar
Fabijańska, A, Smurzyński, J, Hatzopoulos, S, Kochanek, K, Bartnik, G, Raj-Koziak, D et al. The relationship between distortion product otoacoustic emissions and extended high-frequency audiometry in tinnitus patients. Part 1: normally hearing patients with unilateral tinnitus. Med Sci Monit 2012;18:765–70CrossRefGoogle ScholarPubMed
Jastreboff, PJ, Hazell, JW. A neurophysiological approach to tinnitus: clinical implications. Br J Audiol 1993;27:717CrossRefGoogle ScholarPubMed
Jastreboff, PJ. Tinnitus as a phantom perception: theories and clinical implications. In: Vernon, JA, Møller, AR, eds. Mechanisms of Tinnitus. London: Allyn and Bacon, 1995;7394Google Scholar
Clark, WW, Kim, DO, Zurek, PM, Bohne, BA. Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 1984;16:299314CrossRefGoogle ScholarPubMed
Chéry-croze, S, Collet, L, Morgon, A. Medial olivo-cochlear system and tinnitus. Acta Otolaryngol 1993;113:285–9010.3109/00016489309135810CrossRefGoogle ScholarPubMed
Fernandes, L, dos Santos, TMM. Tinnitus and normal hearing: a study on the transient otoacoustic emissions suppression. Braz J Otorhinolaryngol 2009;75:414–19CrossRefGoogle Scholar
Riga, M, Papadas, T, Werner, JA, Dalchow, CV. A clinical study of the efferent auditory system in patients with normal hearing who have acute tinnitus. Otol Neurotol 2007;28:185–9010.1097/MAO.0b013e31802e2a14CrossRefGoogle ScholarPubMed
Coles, MGH, Smid, HGOM, Scheffers, MK, Otten, LJ. Mental chronometry and the study of human information processing. In: Coles, MGH, Rugg, MD, eds. Electrophysiology of Mind. Event-related Potentials and Cognition. Oxford: Oxford University Press, 1995;86131Google Scholar
Hallam, RS, McKenna, L, Shurlock, L. Tinnitus impairs cognitive efficiency. Int J Audiol 2004;43:218–2610.1080/14992020400050030CrossRefGoogle ScholarPubMed
Jacobson, GP, Calder, JA, Newman, CW, Peterson, EL, Wharton, JA, Ahmad, BK. Electrophysiological indices of selective auditory attention in subjects with and without tinnitus. Hear Res 1996;97:667410.1016/S0378-5955(96)80008-6CrossRefGoogle ScholarPubMed
De Ridder, D, Song, J-J, Vanneste, S. Frontal cortex TMS for tinnitus. Brain Stimul 2013;6:355–6210.1016/j.brs.2012.07.002CrossRefGoogle ScholarPubMed
McKenna, LM, Hallam, RS, Shurlock, L. Cognitive functioning in tinnitus patients. In: Reich, G, Vernon, J, eds. Proceedings of the 5th International Tinnitus Seminar. Portland, Oregon: American Tinnitus Association, 1996;589–95Google Scholar
Gabr, TA, Abd El-Hay, M, Badawy, A. Electrophysiological and psychological studies in tinnitus. Auris Nasus Larynx 2011;38:678–83CrossRefGoogle ScholarPubMed
Newman, CW, Wharton, JA, Jacobson, GP. Self-focused and somatic attention in patients with tinnitus. J Am Acad Audiol 1997;8:143–9Google ScholarPubMed