Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T11:57:30.893Z Has data issue: false hasContentIssue false

Sex difference in counts of α4 and α7 nicotinic acetylcholine receptors in the nasal polyps of adults with or without exposure to tobacco smoke

Published online by Cambridge University Press:  11 June 2018

B B Montaño-Velázquez
Affiliation:
Otorhinolaryngology Service, Hospital General del Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
D A Lara-Sánchez
Affiliation:
Otorhinolaryngology Service, Hospital General del Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
A Orozco-Sánchez
Affiliation:
Otorhinolaryngology Service, Hospital General del Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
F J García-Vázquez
Affiliation:
Department of Anatomical Pathology, Instituto Nacional de Pediatría, Mexico City, Mexico
M R Mora-Campos
Affiliation:
Anatomical Pathology Service, Hospital de Especialidades del Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
K Jáuregui-Renaud*
Affiliation:
Medical Research Unit in Otoneurology, Instituto Mexicano del Seguro Social, Mexico City, Mexico
*
Address for correspondence: Dr Kathrine Jáuregui-Renaud, Unidad de Investigación Médica en Otoneurología, PB Edificio C Salud en el Trabajo, Centro Médico Nacional sXXI, IMSS, Av. Cuauhtémoc 330, Colonia Doctores, CP 06720, Ciudad de México, México E-mail: [email protected]

Abstract

Objective

To assess counts of α4 and α7 nicotinic acetylcholine receptors in nasal polyps of adults with or without long-term exposure to cigarette tobacco smoke.

Methods

Twenty-two patients with and 22 patients without exposure to cigarette tobacco smoke participated in the study. After endoscopic polypectomy, the fragments of the nasal polyps were analysed by immunohistochemistry.

Results

Compared to patients with no exposure, patients with exposure showed higher counts of α4 and α7 nicotinic acetylcholine receptors (t-test, p < 0.05). However, in patients with no exposure, multivariate analysis showed gender dimorphism, with lower counts in males than in females, and no influence from other variables (analysis of covariance, p > 0.05).

Conclusion

Exposure to cigarette tobacco smoke may induce increased counts of α4 and α7 nicotinic acetylcholine receptors in nasal polyps of adults, with lower counts in males than females without exposure to tobacco smoke.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr K Jáuregui-Renaud takes responsibility for the integrity of the content of the paper

References

1Hulse, KE, Stevens, WW, Tan, BK, Schleimer, RP. Pathogenesis of nasal polyposis. Clin Exp Allergy 2015;45:328–46Google Scholar
2Chen, Y, Dales, R, Lin, M. The epidemiology of chronic rhinosinusitis in Canadians. Laryngoscope 2003;113:1199–205Google Scholar
3Klein, JO. Current issues in upper respiratory tract infections in infants and children: rationale for antibacterial therapy. Pediatr Infect Dis J 1994;13:S59Google Scholar
4Pagliuca, G, Rosato, C, Martellucci, S, De Vincentiis, M, Greco, A, Fusconi, M et al. Cytologic and functional alterations of nasal mucosa in smokers: temporary or permanent damage? Otolaryngol Head Neck Surg 2015;152:740–5Google Scholar
5Sopori, M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002;2:372–7Google Scholar
6Keiger, CJ, Case, LD, Kendal-Reed, M, Jones, KR, Drake, AF, Walker, JC. Nicotinic cholinergic receptor expression in the human nasal mucosa. Ann Otol Rhinol Laryngol 2003;112:7784Google Scholar
7Sharma, G, Vijayaraghavan, S. Nicotinic receptor signaling in nonexcitable cells. J Neurobiol 2002;53:524–34Google Scholar
8Wessler, I, Roth, E, Deutsch, C, Brockerhoff, P, Bittinger, F, Kirkpatrick, CJ et al. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 2001;134:951–6Google Scholar
9Kummer, W, Lips, KS, Pfeil, U. The epithelial cholinergic system of the airways. Histochem Cell Biol 2008;130:219–34Google Scholar
10Grando, SA, Kawashima, K, Kirkpatrick, CJ, Wessler, I. Recent progress in understanding the non-neuronal cholinergic system in humans. Life Sci 2007;80:2181–5Google Scholar
11Albuquerque, EX, Pereira, EF, Alkondon, M, Rogers, SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009;89:73120Google Scholar
12Buisson, B, Bertrand, D. Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function. J Neurosci 2001;21:1819–29Google Scholar
13Cosgrove, KP, Esterlis, I, McKee, SA, Bois, F, Seibyl, JP, Mazure, CM et al. Sex differences in availability of β2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch Gen Psychiatry 2012;69:418–27Google Scholar
14Wang, H, Yu, M, Ochani, M, Amella, CA, Tanovic, M, Susarla, S et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384–8Google Scholar
15Shin, VY, Wu, WK, Chu, KM, Wong, HP, Lam, EK, Tai, EK et al. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res 2005;3:607–15Google Scholar
16Maouche, K, Polette, M, Jolly, T, Medjber, K, Cloëz-Tayarani, I, Changeux, JP et al. α7 nicotinic acetylcholine receptor regulates airway epithelium differentiation by controlling basal cell proliferation. Am J Pathol 2009;175:1868–82Google Scholar
17Gahring, LC, Rogers, SW. Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS J 2006;7:E88594Google Scholar
18Zia, S, Ndoye, A, Nguyen, VT, Grando, SA. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 1997;97:243–62Google Scholar
19Tapia-Conyer, R, Medina-Mora, ME, Sepúlveda, J, De la Fuente, R, Kumate, J. The national addictions survey of Mexico [in Spanish]. Salud Publica Mex 1990;32:507–22Google Scholar
20Lund, VJ, Kennedy, DW. Staging for rhinosinusitis. Otolaryngol Head Neck Surg 1997;117:S3540Google Scholar
21Kennedy, DW. Functional endoscopic sinus surgery. Technique. Arch Otolaryngol 1985;111:643–9Google Scholar
22Hosur, V, Leppanen, S, Abutaha, A, Loring, RH. Gene regulation of alpha4beta2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem 2009;111:848–58Google Scholar
23Ansar, AS, Penhale, WJ, Talal, N. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am J Pathol 1985;121:531–51Google Scholar
24Bouman, A, Heineman, MJ, Faas, MM. Sex hormones and the immune response in humans. Hum Reprod Update 2005;11:411–23Google Scholar
25Kanda, N, Tamaki, K. Estrogen enhances immunoglobulin production by human PBMCs. J Allergy Clin Immunol 1999;103:282–8Google Scholar
26Kanda, N, Tsuchida, T, Tamaki, K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol 1996;106:410–15Google Scholar
27Collins, MM, Pang, YT, Loughran, S, Wilson, JA. Environmental risk factors and gender in nasal polyposis. Clin Otolaryngol Allied Sci 2002;27:314–17Google Scholar
28Klein, SL. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol 2004;26:247–64Google Scholar