Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T05:23:41.415Z Has data issue: false hasContentIssue false

Mycoplasma pneumoniae and Chlamydophila pneumoniae: a comparative study in patients with nasal polyposis and healthy controls

Published online by Cambridge University Press:  30 July 2015

D G Ioannidis
Affiliation:
Department of Microbiology, University of Thessaly, Larissa, Greece
V A Lachanas
Affiliation:
Department of Otorhinolaryngology, University Hospital of Larissa, Greece
Z Florou
Affiliation:
Department of Microbiology, University of Thessaly, Larissa, Greece
J G Bizakis
Affiliation:
Department of Otorhinolaryngology, University Hospital of Larissa, Greece
E Petinaki*
Affiliation:
Department of Microbiology, University of Thessaly, Larissa, Greece
C E Skoulakis
Affiliation:
Department of Otorhinolaryngology, University Hospital of Larissa, Greece
*
Address for correspondence: Dr Efthymia Petinaki, Department of Microbiology, University of Thessaly Viopolis, PC 41110 Larissa, Greece Fax: +30 241 3 501570 E-mail: [email protected]

Abstract

Introduction:

The role played by Mycoplasma pneumoniae and Chlamydophila pneumoniae in the pathogenesis of chronic rhinosinusitis with nasal polyps has been the object of ongoing debate. We used real-time polymerase chain reaction to investigate the prevalence of both microorganisms in the nasal tissue samples of patients and controls.

Methods:

We extracted DNA from nasal polyp samples obtained during functional endoscopic sinus surgery and the inferior turbinate samples of controls undergoing septoplasty. We used the highly sensitive real-time polymerase chain reaction to detect the presence of M pneumoniae and C pneumoniae DNA.

Results:

Patients with chronic rhinosinusitis with nasal polyps consisted of 62 individuals (39 men; mean age 51 years); the control group consisted of 24 individuals (13 men; mean age 45 years). All samples from both groups were negative for M pneumoniae and C pneumoniae DNA.

Conclusion:

We have demonstrated that the likelihood of M pneumoniae and C pneumoniae acting as an ongoing inflammatory stimulus in chronic rhinosinusitis with nasal polyps is slim.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Fokkens, WJ, Lund, VJ, Mullol, J, Bachert, C, Alobid, I, Baroody, F et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012;50:112CrossRefGoogle ScholarPubMed
2Hastan, D, Fokkens, WJ, Bachert, C, Newson, RB, Bislimovska, J, Bockelbrink, A et al. Chronic rhinosinusitis in Europe: an underestimated disease. A GA2LEN study. Allergy 2011;66:1216–23CrossRefGoogle ScholarPubMed
3Lee, S, Lane, AP. Chronic rhinosinusitis as a multifactorial inflammatory disorder. Curr Infect Dis Rep 2011;13:159–68CrossRefGoogle ScholarPubMed
4Blasi, F. Atypical pathogens and respiratory tract infections. Eur Respir J 2004;24:171–81CrossRefGoogle ScholarPubMed
5Ye, Q, Xu, XJ, Shao, WX, Pan, YX, Chen, XJ. Mycoplasma pneumoniae infection in children is a risk factor for developing allergic diseases. ScientificWorldJournal 2014;2014:986527CrossRefGoogle ScholarPubMed
6Yano, T, Ichikawa, Y, Komatu, S, Arai, S, Oizumi, K. Association of Mycoplasma pneumoniae antigen with initial onset of bronchial asthma. Am J Respir Crit Care Med 1994;149:1348–53CrossRefGoogle ScholarPubMed
7Sutherland, ER, Martin, RJ. Asthma and atypical bacterial infection. Chest 2007;132:1962–6CrossRefGoogle ScholarPubMed
8Hammerschlag, MR. The intracellular life of chlamydiae. Semin Pediatr Infect Dis 2002;13:239–48CrossRefGoogle ScholarPubMed
9Apan, TZ, Alpay, D, Alpay, Y. The possible association of Chlamydia pneumoniae infection with nasal polyps. Eur Arch Otorhinolaryngol 2007;264:2731CrossRefGoogle ScholarPubMed
10Meltzer, EO, Szwarcberg, J, Pill, MW. Allergic rhinitis, asthma, and rhinosinusitis: diseases of the integrated airway. J Manag Care Pharm 2004;10:310–7Google ScholarPubMed
11Gurr, PA, Chakraverty, A, Callanan, V, Gurr, SJ. The detection of Mycoplasma pneumoniae in nasal polyps. Clin Otolaryngol Allied Sci 1996;21:269–73CrossRefGoogle ScholarPubMed
12Bucholtz, GA, Salzman, SA, Bersalona, FB, Boyle, TR, Ejercito, VS, Penno, L et al. PCR analysis of nasal polyps, chronic sinusitis, and hypertrophied turbinates for DNA encoding bacterial 16S rRNA. Am J Rhinol 2002;16:169–73CrossRefGoogle ScholarPubMed
13Pandak, N, Pajić-Penavić, I, Židovec-Lepej, S, Planinić, A, Trošelj-Vukić, B, Perić, L. Chlamydophila pneumoniae and Mycoplasma pneumoniae were not identified in sinus mucosa of patients with chronic rhinosinusitis. Eur Arch Otorhinolaryngol 2014;271:1553–5.CrossRefGoogle Scholar
14Nia, SJ, Farhadi, M, Darestani, SG, Tabatabaei, A, Shamshiri, AR, Noorbakhsh, S. Searching the M. Pneumonia in cases with nasal polyp accompanied by chronic rhinosinusitis using polymerase chain reaction in tissue and serology: a case control study. Open Access Scientific Reports 2013;2:711. In: http://omicsonline.org/scientific-reports/2155-9597-SR-711.pdf [3 July 2015]Google Scholar
15Lee, RE, Kaza, S, Plano, GV, Casiano, RR. The role of atypical bacteria in chronic rhinosinusitis. Otolaryngol Head Neck Surg 2005;133:407–10CrossRefGoogle ScholarPubMed
16Fahrenholz, J, Stratton, C, Wolf, B, Duncavage, J, Tang, Y, Russell, P et al. Chlamydophila pneumoniae and chronic sinusitis. J Allergy Clin Immunol 2008;121:S217CrossRefGoogle Scholar
17Shokrollahi, MR, Farhadi, M, Noorbakhsh, S, Nia, SJ, Ghavidel, S, Shamshiri, AR. Role of C. Pneumoniae in nasal polyp formation: PCR in tissue and serology: a cross sectional study: Tehran, Iran. Int J Curr Microbiol App Sci 2014;3:754–9Google Scholar
18Reznikov, M, Blackmore, TK, Finlay-Jones, JJ, Gordon, DL. Comparison of nasopharyngeal aspirates and throat swab specimens in a polymerase chain reaction-based test for Mycoplasma pneumoniae. Eur J Clin Microbiol Infect Dis 1995;14:5861CrossRefGoogle Scholar
19Kuoppa, Y, Boman, J, Scott, L, Kumlin, U, Eriksson, I, Allard, A. Quantitative detection of respiratory Chlamydia pneumoniae infection by real-time PCR. J Clin Microbiol 2002;40:2273–4CrossRefGoogle ScholarPubMed
20Nilsson, AC, Björkman, P, Persson, K. Polymerase chain reaction is superior to serology for the diagnosis of acute Mycoplasma pneumoniae infection and reveals a high rate of persistent infection. BMC Microbiol 2008;8:93CrossRefGoogle ScholarPubMed
21Gibb, AP, Wong, S. Inhibition of PCR by agar from bacteriological transport media. J Clin Microbiol 1998;36:275–6CrossRefGoogle ScholarPubMed
22Cho, MC, Kim, H, An, D, Lee, M, Noh, SA, Kim, MN et al. Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila. Ann Lab Med 2012;32:133–8CrossRefGoogle ScholarPubMed
23Sidal, M, Kilic, A, Unuvar, E, Oguz, F, Onel, M, Agacfidan, A et al. Frequency of Chlamydia pneumoniae and Mycoplasma pneumoniae infections in children. J Trop Pediatr 2007;53:225–31CrossRefGoogle ScholarPubMed