Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:32:25.300Z Has data issue: false hasContentIssue false

Quillen's work on the foundations of cyclic cohomology

Published online by Cambridge University Press:  30 April 2013

Joachim Cuntz*
Affiliation:
Mathematisches Institut, Einsteinstr.62, 48149 Münster, [email protected]
Get access

Abstract

We survey Quillen's contributions to the area of cyclic homology, apart from his very first result in [19].

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Block, Jonathan and Getzler, Ezra. Equivariant cyclic homology and equivariant differential forms. Ann. Sci. École Norm. Sup. (4), 27(4):493527, 1994.CrossRefGoogle Scholar
2.Brylinski, Jean-Luc. Algebras associated with group actions and their homology. preprint, Brown University, 1987.Google Scholar
3.Connes, A.. Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules. K-Theory 1(6):519548, 1988.Google Scholar
4.Connes, A. and Cuntz, J.. Quasi homomorphismes, cohomologie cyclique et positivité. Comm. Math. Phys. 114(3):515526, 1988.Google Scholar
5.Connes, Alain. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62:257360, 1985.Google Scholar
6.Cuntz, Joachim. Universal extensions and cyclic cohomology. C. R. Acad. Sci. Paris Sér. I Math. 309(1):58, 1989.Google Scholar
7.Cuntz, Joachim. Cyclic theory, bivariant K-theory and the bivariant Chern-Connes character. In Cyclic homology in non-commutative geometry, Encyclopaedia Math. Sci. 121, pages 171. Springer, Berlin, 2004.Google Scholar
8.Cuntz, Joachim and Quillen, Daniel. On excision in periodic cyclic cohomology. C. R. Acad. Sci. Paris Sér. I Math. 317(10):917922, 1993.Google Scholar
9.Cuntz, Joachim and Quillen, Daniel. On excision in periodic cyclic cohomology. II. The general case. C. R. Acad. Sci. Paris Sér. I Math. 318(1):1112, 1994.Google Scholar
10.Cuntz, Joachim and Quillen, Daniel. Algebra extensions and nonsingularity. J. Amer. Math. Soc. 8(2):251289, 1995.Google Scholar
11.Cuntz, Joachim and Quillen, Daniel. Cyclic homology and nonsingularity. J. Amer. Math. Soc. 8(2):373442, 1995.Google Scholar
12.Cuntz, Joachim and Quillen, Daniel. Operators on noncommutative differential forms and cyclic homology. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology IV, pages 77111. Int. Press, Cambridge, MA, 1995.Google Scholar
13.Cuntz, Joachim and Quillen, Daniel. Excision in bivariant periodic cyclic cohomology. Invent. Math. 127(1):6798, 1997.CrossRefGoogle Scholar
14.Goodwillie, Thomas G.. Cyclic homology, derivations, and the free loopspace. Topology 24(2):187215, 1985.Google Scholar
15.Higson, Nigel. The residue index theorem of Connes and Moscovici. In Surveys in noncommutative geometry, Clay Math. Proc. 6, pages 71126. Amer. Math. Soc., Providence, RI, 2006.Google Scholar
16.Jaffe, Arthur, Lesniewski, Andrzej, and Osterwalder, Konrad. Quantum K-theory. I. The Chern character. Comm. Math. Phys. 118(1):114, 1988.Google Scholar
17.Jones, John D. S. and Kassel, Christian. Bivariant cyclic theory. K-Theory 3(4):339365, 1989.Google Scholar
18.Kontsevich, Maxim and Rosenberg, Alexander L.. Noncommutative smooth spaces. In The Gelfand Mathematical Seminars, 1996–1999, Gelfand Math. Sem., pages 85108. Birkhäuser Boston, Boston, MA, 2000.Google Scholar
19.Loday, Jean-Louis and Quillen, Daniel. Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv. 59(4):569591, 1984.Google Scholar
20.Meyer, Ralf. Excision in entire cyclic cohomology. J. Eur. Math. Soc. (JEMS) 3(3):269286, 2001.Google Scholar
21.Meyer, Ralf. Local and analytic cyclic homology, EMS Tracts in Mathematics 3. European Mathematical Society (EMS), Zürich, 2007.Google Scholar
22.Perrot, Denis. A bivariant Chern character for families of spectral triples. Comm. Math. Phys. 231(1):4595, 2002.CrossRefGoogle Scholar
23.Puschnigg, Michael. Excision in cyclic homology theories. Invent. Math. 143(2):249323, 2001.Google Scholar
24.Puschnigg, Michael. Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. Math. 8:143245 (electronic), 2003.Google Scholar
25.Quillen, D.. Chern-Simons forms and cyclic cohomology. In The interface of mathematics and particle physics (Oxford, 1988), Inst. Math. Appl. Conf. Ser. New Ser. 24, pages 117134. Oxford Univ. Press, New York, 1990.Google Scholar
26.Quillen, Daniel. Algebra cochains and cyclic cohomology. Inst. Hautes Études Sci. Publ. Math. 68:139174 (1989), 1988.Google Scholar
27.Quillen, Daniel. Cyclic cohomology and algebra extensions. K-Theory 3(3):205246, 1989.Google Scholar
28.Quillen, Daniel. Bivariant cyclic cohomology and models for cyclic homology types. J. Pure Appl. Algebra 101(1):133, 1995.Google Scholar
29.Schelter, William F.. Smooth algebras. J. Algebra 103(2):677685, 1986.Google Scholar
30.Voigt, Christian. Equivariant local cyclic homology and the equivariant Chern-Connes character. Doc. Math. 12:313359 (electronic), 2007.CrossRefGoogle Scholar
31.Voigt, Christian. Equivariant periodic cyclic homology. J. Inst. Math. Jussieu 6(4):689763, 2007.Google Scholar
32.Wodzicki, Mariusz. Excision in cyclic homology and in rational algebraic K-theory. Ann. of Math. (2), 129(3):591639, 1989.Google Scholar