Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:15:40.808Z Has data issue: false hasContentIssue false

On reduction maps for the étale and Quillen K-theory of curves and applications

Published online by Cambridge University Press:  11 January 2008

Stefan Barańczuk
Affiliation:
[email protected] of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland
Krzysztof Górnisiewicz
Affiliation:
[email protected] of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland
Get access

Abstract

In this paper we consider reduction of nontorsion elements in the étale and Quillen K-theory of a curve X over a number field. As an application we solve two problems: detecting linear dependence and the support problem.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar1.Barańczuk, S., On reduction maps and support problem in K-theory and abelian varieties, Journal of Number Theory 119 (2006), 117CrossRefGoogle Scholar
BGK.Banaszak, G., Gajda, W., Krasoń, P.: On Galois cohomology of some p-adic representations and étale K–theory of curves, Contemporary Math. AMS 241 (1999), 2344CrossRefGoogle Scholar
BGK1.Banaszak, G., Gajda, W., Krasoń, P., A support problem for K-theory of number fields, C. R. Acad. Paris Sér. 1 Math. 331 no. 3 (2000), 185190CrossRefGoogle Scholar
BGK2.Banaszak, G., Gajda, W., Krasoń, P., Support problem for the intermediate jacobians of l-adic representations, Journal of Number Theory 100 (2003), 133168CrossRefGoogle Scholar
BGK3.Banaszak, G., Gajda, W., Krasoń, P., Detecting linear dependence by reduction maps, Journal of Number Theory 115 (2005), 322342CrossRefGoogle Scholar
BGK4.Banaszak, G., Gajda, W., Krasoń, P., On reduction map for étale K-theory of curves, Homology, Homotopy and Applications, 7(3) (2005), 110CrossRefGoogle Scholar
Bo.Bogomolov, F. A., Sur l'algébraicité des représentations l-adiques, C. R. Acad. Sci. Paris 290 (21 avril (1980), 701703Google Scholar
C-RS.Corrales-Rodrigáñez, C., Schoof, R., The Support Problem and Its Elliptic Analogue, Journal of Number Theory 64 (1997), 276290CrossRefGoogle Scholar
DF.Dwyer, W., Friedlander, E.: Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292 (1985), 247280Google Scholar
GG.Gajda, W., Górnisiewicz, K., Linear dependence in Mordell-Weil groups, http://arxiv.org/pdf/math/(0606)493Google Scholar
J.Jannsen, U.: Continuos étale cohomology, Math. Annalen 280 (1988), 207245CrossRefGoogle Scholar
KP.Khare, Ch., Prasad, D., Reduction of homomorphisms mod p and algebraicity, J. of Number Theory 105 (2004), 322332CrossRefGoogle Scholar
Lar.Larsen, M., The support problem for abelian varieties, J. of Number Theory 101 (2003), 398403CrossRefGoogle Scholar
S.Schinzel, A., O pokazatelnych sravneniach, Matematicheskie Zapiski 2 (1996), 121126Google Scholar
Qu.Quillen, D.: On the cohomology and K-theory of the general linear group over finite field, Ann. Math. 96 (1972), 552586CrossRefGoogle Scholar
We.Weston, T., Kummer theory of abelian varieties and reductions of Mordell-Weil groups, Acta Arithmetica 110.1 (2003), 7788CrossRefGoogle Scholar