Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T14:34:17.589Z Has data issue: false hasContentIssue false

Morava K-theory rings for the groups G38, …, G41 of order 32

Published online by Cambridge University Press:  06 December 2013

Get access

Abstract

B. Schuster [19] proved that the mod 2 Morava K-theory K(s)*(BG) is evenly generated for all groups G of order 32. For the four groups G of order 32 with the numbers 38, 39, 40 and 41 in the Hall-Senior list [11], the ring K(2)*(BG) has been shown to be generated as a K(2)*-module by transferred Euler classes. In this paper, we show this for arbitrary s and compute the ring structure of K(s)*(BG). Namely, we show that K(s)*(BG) is the quotient of a polynomial ring in 6 variables over K(s)*(pt) by an ideal for which we list explicit generators.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J. F. : Infinite loop spaces, Annals of Mathematics Studies, Princeton University Press, Princeton, (1978).Google Scholar
2.Buchstaber, V. M. : Modules of differentials of the Atiyah-Hirzebruch spectral sequence, Matem. Sbornik 78(2) (1969), 307320.Google Scholar
3.Buchstaber, V. M. : Modules of differentials of the Atiyah-Hirzebruch spectral sequence. II, Matem. Sbornik 83(1) (1970), 6176.Google Scholar
4.Bakuradze, M. : Morava K-theory rings for the modular groups in Chern classes, K-Theory 38(2) (2008), 8794.Google Scholar
5.Bakuradze, M. : Morava K-theory rings for a quasi-dihedral group in Chern classes, Proc. Steklov Inst. of Math. 252 (2006), 2329.CrossRefGoogle Scholar
6.Bakuradze, M. : Induced representations, Transferred Chern classes and Morava rings K(s)*(BG): W some calculations, Proc. Steklov Inst. of Math. 275 (2011), 160168.CrossRefGoogle Scholar
7.Bakuradze, M., Priddy, S. : Transferred Chern classes in Morava K-theory, Proc. Amer. Math. Soc. 132 (2004), 18551860.Google Scholar
8.Bakuradze, M., Priddy, S. : Transfer and complex oriented cohomology rings, Algebraic & Geometric Topology 3 (2003), 473507.CrossRefGoogle Scholar
9.Bakuradze, M., Vershinin, V. V. : Morava K-theory rings for the dihedral, semi-dihedral and generalized quaternion groups in Chern Classes, Proc. Amer. Math. Soc. 134 (2006), 37073714.Google Scholar
10.Dold, A. : The fixed point transfer of fibre-preserving maps, Math. Zeit. 148 (1976), 215244.CrossRefGoogle Scholar
11.Hall, M. and Senior, J. K. : The groups of order 2n, n ≤ 6, The Macmillan Co., New York; Collier-Macmillan, Ltd., London 1964.Google Scholar
12.Hopkins, M., Kuhn, N., and Ravenel, D. : Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13(3) (2000), 553594.CrossRefGoogle Scholar
13.Hunton, J. R. : Morava K-theories of wreath products, Math. Proc. Camb. Phil. Soc. 107 (1990), 309318.Google Scholar
14.Jonson, D. C., Wilson, W. S. : BP operations and Morava's extraordinary K-theories, Math. Z. 144 (1975), 5575.CrossRefGoogle Scholar
15.Kahn, D. S., Priddy, S. B. : Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc. 78 (1972), 981987.Google Scholar
16.Karoubi, M. : K-Theory. An Introduction, Springer-Verlag, 1978.Google Scholar
17.Kriz, I. : Morava K-theory of classifying spaces: Some calculations, Topology 36 (1997), 12471273.CrossRefGoogle Scholar
18.Ravenel, D. C. : Morava K-theories and finite groups, Contemp. Math. 12 (1982), 289292.CrossRefGoogle Scholar
19.Schuster, B. : Morava K-theory of groups of order 32, Algebraic & Geometric Topology 11 (2011), 503521.Google Scholar
20.Schuster, B. : K(n) Chern approximations of some finite groups, Algebraic & Geometric Topology 12(3) (2012), 16951720.CrossRefGoogle Scholar
21.Schuster, B. : On Morava K-theory of some finite 2-groups, Math. Proc. Camb. Phil. Soc. 121 (1997), 713.Google Scholar
22.Schuster, B. : Morava K-theory of classifying spaces, Habilitationsschrift, 2006, 124 pp.Google Scholar
23.Schuster, B., Yagita, N. : On Morava K-theory of extraspecial 2-groups, Proc. Amer. Math. Soc. 132(4) (2004), 12291239.Google Scholar
24.Tezuka, M. and Yagita, N. : Cohomology Of Finite Groups And Brown-Peterson Cohomology II, Algebraic Topology (Arcata, Ca, 1986), 396–408. Lecture Notes in Math. 1370, Springer, Berlin, 1989.Google Scholar
25.Tezuka, M., Yagita, N. : Cohomology Of Finite Groups And Brown-Peterson Cohomology II, Homotopy Theory And Related Topics (Kinosaki, 1988), 57–69. Lecture Notes in Math. 1418, Springer, Berlin, 1990.Google Scholar
26.Yagita, N. : Equivariant BP-cohomology for finite groups, Trans. Amer. Math. Soc. 317(2) (1990), 485499.Google Scholar
27.Yagita, N. : Cohomology for groups of rankp(G) = 2 and Brown-Peterson cohomology, J. Math. Soc. Japan 45(4) (1993), 627644.Google Scholar
28.Yagita, N. : Note on BP-theory for extensions of cyclic groups by elementary abelian p-groups, Kodai Math. J. 20(2) (1997), 7984.Google Scholar
29.Strickland, N. P. : Chern Approximations for generalised group cohomology, Topology 40(6) (2001), 11671216.Google Scholar