Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:03:39.768Z Has data issue: false hasContentIssue false

Kunneth theorems and unstable operations in 2-adic KO-cohomology

Published online by Cambridge University Press:  30 November 2007

A.K. Bousfield
Affiliation:
[email protected] of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Get access

Abstract

We develop Kunneth theorems and obtain detailed results on unstable operations in 2-adic KO-cohomology and, more generally, in united 2-adic K-cohomology. These results are needed for work on the K-localizations of spaces at the prime 2 and should be of independent interest. Our proofs of relations for unstable operations rely on Atiyah's Real K-theory and on a convenient mod 2 simplification of 2-adic KO-cohomology.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J.F., Lectures on Lie Groups, W.A. Benjamin, New York-Amsterdam, 1969Google Scholar
2.Atiyah, M.F., Vector bundles and the Kunneth formula, Topology 1 (1962), 245248CrossRefGoogle Scholar
3.Atiyah, M.F., K-theory and reality, Quart. J. Math. Oxford 17(1966), 367386CrossRefGoogle Scholar
4.Bendersky, M., Davis, D.M., and Mahowald, M., Stable geometric dimension of vector bundles over even-dimensional real projective spaces, Trans. Amer. Math. Soc., 358(2006), 15851602CrossRefGoogle Scholar
5.Boersema, J.L., Real C*-algebras, united K-theory, and the Kunneth formula, K-Theory 26(2002), 345402CrossRefGoogle Scholar
6.Bousfield, A.K., A classification of K-local spectra, J. Pure Appl. Algebra 66(1990), 121163CrossRefGoogle Scholar
7.Bousfield, A.K., On K*-local stable homotopy theory, Adams Memorial Symposium on Algebraic Topology, Vol.2, London Math. Soc. Lecture Note Ser. 179, Cambridge University Press, 1992, pp.2333CrossRefGoogle Scholar
8.Bousfield, A.K., On X-rings and the K-theory of infinite loop spaces, K-Theory 10(1996), 130CrossRefGoogle Scholar
9.Bousfield, A.K., On p-adic λ-rings and the K-theory of H-spaces, Mathematisches Zeitschrift 223(1996), 483519CrossRefGoogle Scholar
10.Bousfield, A.K., The K-theory localizations and v1-periodic homotopy groups of H-spaces, Topology 38(1999), 12391264CrossRefGoogle Scholar
11.Bousfield, A.K., On the 2-primary v1-periodic homotopy groups of spaces, Topology 44(2005), 381413CrossRefGoogle Scholar
12.Bousfield, A.K., On the 2-adic K-localizations of H-spaces, Homology, Homotopy, and Applications 9(2007), 331366CrossRefGoogle Scholar
13.Crabb, M.C., ℤ/2-homotopy theory, London Math. Soc. Lecture Note Ser. 44, Cambridge University Press, 1980Google Scholar
14.Davis, D.M., Representation types and 2-primary homotopy groups of certain compact Lie groups, Homology, Homotopy, and Applications 5(2003), 297324CrossRefGoogle Scholar
15.Minami, H., The real K-groups of SO.(n) for n ≡ 3,4 and 5 mod8, Osaka J. Math. 25(1988), 185211Google Scholar
16.Mislin, G., Localization with respect to K-theory, J. Pure Appl. Algebra 10(1977), 201213CrossRefGoogle Scholar
17.Radford, D.E., Pointed Hopf algebras are free over Hopf subalgebras, J. Algebra 45(1977), 266273CrossRefGoogle Scholar
18.Ribes, L. and Zalesskii, P., Profinite Groups, Springer-Verlag, Berlin, 2000CrossRefGoogle Scholar
19.Seymour, R.M., The Real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24(1973), 730CrossRefGoogle Scholar
20.Sweedler, M.E., Hopf Algebras,Benjamin, New York, 1969Google Scholar
21.Takeuchi, M., A correspondence between Hopf ideals and sub-Hopf algebras Manuscripta Math. 7(1972), 251–170CrossRefGoogle Scholar