Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:02:30.191Z Has data issue: false hasContentIssue false

Further counterexamples to a conjecture of Beilinson

Published online by Cambridge University Press:  30 November 2007

Rob de Jeu
Affiliation:
[email protected] Exacte Wetenschappen, Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Get access

Abstract

We give stronger counterexamples to a conjecture of Beilinson.

Type
Research Article
Copyright
Copyright © ISOPP 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beilinson, A. A.. Higher regulators and values of L-functions. J. Sov. Math., 30:20362070, 1985CrossRefGoogle Scholar
2.Bloch, S. and Grayson, D.. K 2 and L-functions of elliptic curves: Computer calculations. In Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, volume 55 of Contemporary Mathematics, pages 7988. Amer. Math. Soc., Providence, RI, 1986CrossRefGoogle Scholar
3.de Jeu, R.. A Counterexample to a Conjecture of Beilinson. In The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 491493. Kluwer Acad. Publ., Dordrecht, 2000Google Scholar
4.de Jong, A. J.. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., (83):5193, 1996CrossRefGoogle Scholar
5.de Jong, A. J.. Families of curves and alterations. Ann. Inst. Fourier (Grenoble), 47(2):599621, 1997CrossRefGoogle Scholar
6.Gillet, H. and Soulé, C.. Filtrations on higher algebraic K-theory. In Algebraic K-theory (Seattle, WA, 1997), volume 67 of Proc. Sympos. Pure Math., pages 89148. Amer. Math. Soc., Providence, RI, 1999Google Scholar
7.Milnor, J.. Introduction to Algebraic K-Theory, volume 72 of Annals of Mathematics Studies. Princeton University Press and University of Tokyo Press, Princeton, NJ, 1971Google Scholar
8.Neukirch, J.. Class Field Theory, volume 280 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin, 1986CrossRefGoogle Scholar
9.Quillen, D.. Higher algebraic K-theory I. In Algebraic K-theory 1, volume 341 of Lecture Notes in Mathematics, pages 85147. Springer Verlag, Berlin, 1973Google Scholar
10.Schneider, P.. Introduction to the Beilinson Conjectures. In Beilinson's Conjectures on Special Values of L-Functions, pages 135. Academic Press, Boston, MA, 1988Google Scholar
11.Scholl, A.J.. Integral elements in K-theory and products of modular curves. In The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 467489. Kluwer Acad. Publ., Dordrecht, 2000Google Scholar
12.Tamme, G.. The theorem of Riemann-Roch. In Beilinson's Conjectures on Special Values of L-Functions, pages 103168. Academic Press, Boston, MA, 1988CrossRefGoogle Scholar