Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T14:22:44.099Z Has data issue: false hasContentIssue false

The fundamental theorem via derived Morita invariance, localization, and 1-homotopy invariance

Published online by Cambridge University Press:  24 May 2011

Gonçalo Tabuada
Affiliation:
Departamento de Matematica, FCT-UNL, Quinta da Torre, 2829-516 Caparica, [email protected]
Get access

Abstract

We prove that every functor defined on dg categories, which is derived Morita invariant, localizing, and 1-homotopy invariant, satisfies the fundamental theorem. As an application, we recover in a unified and conceptual way, Weibel and Kassel's fundamental theorems in homotopy algebraic K-theory, and periodic cyclic homology, respectively.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bondal, A. and den Bergh, M. Van, Generators and representability of functors in commutative and noncommutative geometry. Moscow Math. J. 3 (2003), 136.Google Scholar
2.Bousfield, A. and Friedlander, E., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. Geometric applications of homotopy theory. Lecture Notes in Math. 658 (1978), 80130.Google Scholar
3.Cisinski, D.-C. and Tabuada, G., Non-connective K-theory via universal invariants. Available at arXiv:0903:3717v2. To appear in Compositio Mathematica.Google Scholar
4.Cisinski, D.-C. and Tabuada, G., Symmetric monoidal structure on Non-commutative motives. Available at arXiv:1001:0228v2.Google Scholar
5.Drinfeld, V., DG quotients of DG categories. J. Algebra 272 (2004), 643691.CrossRefGoogle Scholar
6.Drinfeld, V., DG categories. University of Chicago Geometric Langlands Seminar 2002. Notes available at http://www.math.utexas.edu/users/benzvi/GRASP/lectures/Langlands.html.Google Scholar
7.Feigin, B. and Tsygan, B., Additive K-theory and crystalline cohomology. Funct. Anal. Appl. 19 (1985), 124132.CrossRefGoogle Scholar
8.Grothendieck, A., Crystals and de Rham cohomology of schemes. Notes by J. Coates and D. Jussila in Dix exposés sur la cohomologie des schémas. North-Holland, Amsterdam, 1968.Google Scholar
9.Kaledin, D., Motivic structures in non-commutative geometry. Available at arXiv:1003:3210. To appear in the Proceedings of the ICM 2010.Google Scholar
10.Kassel, C., Cyclic homology, comodules and mixed complexes. J. Algebra 107 (1987), 195216.Google Scholar
11.Keller, B., On differential graded categories. International Congress of Mathematicians (Madrid), Vol. II, 151190, Eur. Math. Soc., Zürich, 2006.Google Scholar
12.Keller, B., Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra 123 (1998), 223273.CrossRefGoogle Scholar
13.Kontsevich, M., Triangulated categories and geometry. Course at the École Normale Supérieure, Paris, 1998. Notes available at www.math.uchicago.edu/mitya/langlands.htmlGoogle Scholar
14.Kontsevich, M., Non-commutative motives. Talk at the Institute for Advanced Study, October 2005. Video available at http://video.ias.edu/Geometry-and-Arithmetic.Google Scholar
15.Kontsevich, M., Notes on motives in finite characteristic. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 213247, Progr. Math. 270, BirkŁuser Boston, MA, 2009.Google Scholar
16.Lunts, V. and Orlov, D., Uniqueness of enhancement for triangulated categories. J. Amer. Math. Soc. 23 (2010), 853908.Google Scholar
17.Neeman, A., Triangulated categories. Annals of Mathematics Studies 148, Princeton University Press, 2001.Google Scholar
18.Quillen, D., Homotopical algebra. Lecture Notes in Mathematics 43, Springer-Verlag ,1967.Google Scholar
19.Schlichting, M., Negative K-theory of derived categories. Math. Z. 253 (2006), no. 1, 97134.CrossRefGoogle Scholar
20.Tabuada, G., Higher K-theory via universal invariants. Duke Math. J. 145 (2008), no. 1, 121206.CrossRefGoogle Scholar
21.Tabuada, G., Invariants additifs de dg-catégories. Int. Math. Res. Not. 53 (2005), 33093339.Google Scholar
22.Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories. Grothendieck Festschrift, Volume III. Progress in Math. 88, 247436. Birkhauser, Boston, Bassel, Berlin, 1990.Google Scholar
23.Weibel, C., Homotopy algebraic K-theory. Contemporary Mathematics 83 (1989).CrossRefGoogle Scholar
24.Weibel, C., KV -theory of categories. Trans. of the AMS 267 (1981), 621635.Google Scholar
25.Weibel, C., An introduction to homological algebra. Cambridge Studies in Adv. Math. 38, Cambridge Univ. Press, 1994.Google Scholar