Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T14:28:22.395Z Has data issue: false hasContentIssue false

Cyclic cohomology and Baaj-Skandalis duality

Published online by Cambridge University Press:  16 December 2013

Get access

Abstract

We construct a duality isomorphism in equivariant periodic cyclic homology analogous to Baaj-Skandalis duality in equivariant Kasparov theory. As a consequence we obtain general versions of the Green-Julg theorem and the dual Green-Julg theorem in periodic cyclic theory.

Throughout we work within the framework of bornological quantum groups, thus in particular incorporating at the same time actions of arbitrary classical Lie groups as well as actions of compact or discrete quantum groups. An important ingredient in the construction of our duality isomorphism is the notion of a modular pair for a bornological quantum group, closely related to the concept introduced by Connes and Moscovici in their work on cyclic cohomology for Hopf algebras.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Akbarpour, R., Khalkhali, M., Hopf algebra equivariant cyclic homology and cyclic homol- ogy of crossed product algebras. J. Reine Angew. Math. 559 (2003), 137152.Google Scholar
2.Baaj, S., Skandalis, Georges, C*-algebres de Hopf et théorie de Kasparov équivariante. K-Theory 2(6) (2009), 683721.Google Scholar
3.Baaj, S., Skandalis, G., Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4) (1993), 425488.Google Scholar
4.Block, J., Excision in cyclic homology of topological algebras. PhD thesis, Harvard University, 1987.Google Scholar
5.Brylinksi, J.-L., Algebras associated with group actions and their homology. Brown university preprint, 1986.Google Scholar
6.Bues, M., Equivariant differential forms and crossed products. PhD thesis, Harvard University, 1996.Google Scholar
7.Connes, A., Moscovici, H., Hopf algebras, cyclic cohomology and the transverse index theorem. Comm. Math. Phys. 198(1) (1998), 199246.CrossRefGoogle Scholar
8.Connes, A., Moscovici, H., Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48(1) (1990), 97108.Google Scholar
9.Connes, A., Moscovici, H., Cyclic cohomology and Hopf algebra symmetry. Lett. Math. Phys. 52(1) (2000), 128. Conference Moshé Flato 1999 (Dijon).Google Scholar
10.Cuntz, J.. Noncommutative simplicial complexes and the Baum-Connes conjecture. Geom. Funct. Anal. 12(2) (2002), 307329.Google Scholar
11.Fischer, R., Volle verschränkte Produkte für Quantengruppen und äquivariante KK-Theorie. PhD Thesis, Münster, 2003.Google Scholar
12.Hajac, P. M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y., Hopf-cyclic homology and cohomology with coefficients. Math, C. R.. Acad. Sci. Paris 338(9) (2004), 667672.Google Scholar
13.Hajac, P. M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y., Stable anti-Yetter-Drinfeld modules. C. R. Math. Acad. Sci. Paris 338(8) (2004), 587590.CrossRefGoogle Scholar
14.Klimyk, A., Schmüdgen, K., Quantum groups and their representations. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.Google Scholar
15.Kustermans, J, Vaes, S., Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(6) (2000), 837934.Google Scholar
16.Meyer, R., Local and analytic cyclic homology, EMS Tracts in Mathematics 3. European Mathematical Society (EMS), Zürich, 2007CrossRefGoogle Scholar
17.Panaite, F. and Staic, M. D., Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category. Israel J. Math. 158 (2007), 349365.CrossRefGoogle Scholar
18.Staic, M. D., A note on anti-Yetter-Drinfeld modules. In Hopf algebras and generalizations, Contemp. Math. 441, 149153. Amer. Math. Soc., Providence, RI, 2007.Google Scholar
19.Van Daele, A., An algebraic framework for group duality. Adv. Math. 140(2) (1998), 323366.Google Scholar
20.Voigt, C., Equivariant periodic cyclic homology. J. Inst. Math. Jussieu 6(4) (2007), 689763.CrossRefGoogle Scholar
21.Voigt, C.. Bornological quantum groups. Pacific J. Math. 235(1) (2008), 93135.Google Scholar
22.Voigt, C.. Equivariant cyclic homology for quantum groups. In K-theory and noncommutative geometry, EMS Ser. Congr. Rep. 151179. Eur. Math. Soc. Zürich, 2008.Google Scholar