Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T02:54:06.615Z Has data issue: false hasContentIssue false

Comparing Assembly Maps in Algebraic K-Theory

Published online by Cambridge University Press:  05 February 2010

Ron Sperber
Affiliation:
Keuka College, Keuka Park, NY 14478, USA, [email protected]
Get access

Abstract

Given a group G and a ring R, Loday [Lod, 1976] described an assembly map αG : hn(BG;L(R)) → Kn(RG) where L(R) is a spectrum with nth space K0(SnR) × BGL(SnR)+ for n ≥ 0 and Kn(RG) = πn(BGL(RG)+ × K0(RG)). Hambleton and Pederson, [HP, 2004], indicate a proof that this map is isomorphic to the map on homotopy groups from the assembly map . We will complete the proof of this.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

CP, 1997.Cardénas, M. and Pedersen, E.K., On the Karoubi filtration of a category K-theory 12(1997) , 165191Google Scholar
Gra, 1976.Grayson, D., Higher Algebraic K-theory: II (after Daniel Quillen), Lecture Notes in Mathematics 551, Springer, 1976Google Scholar
HP, 2004. [ Hambleton, I. and Pedersen, E.K., Identifying Assembly maps in K- and L- theory, Math Ann. 328(2004), 2757CrossRefGoogle Scholar
Kar, 1976.Karoubi, M. , Foncteurs dérivés et K-Théorie, Lecture Notes in Mathematics 136, Springer, 1976Google Scholar
Lod, 1976.Loday, J.-L., K-théorie algébrique et représentations de groupes, Ann. Sci. Ecole Norm. Sup. (4) 9, 1976, vol. 3, 309377CrossRefGoogle Scholar
Mac, 1971.Lane, S. Mac, Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer-Verlag, 1971Google Scholar
May, 1980.May, J.P., Pairings of Categories and Spectra, J. of Pure and Applied Algebra 19(1980), 299346CrossRefGoogle Scholar
PW1, 1986.Pedersen, E. K. and Weibel, C., K-Theory Homology of Spaces, Algebraic Topology, (Arcata, 1986), Lecture Notes in Mathematics 1370, Springer, Berlin, 1989, pp. 346361Google Scholar
PW2, 1983.Pedersen, E. K. and Weibel, C., A nonconnective delooping of Algebraic K-theory, Algebraic and Geometric Topology, Proceedings Rutgers 1983, Lecture Notes in Mathematics 1126, Springer Verlag, Berlin-New York, 1984, pp. 166181.Google Scholar
Ros, 1994.Rosenberg, J., Algebraic K-theory and Its Applications, Graduate Texts in Mathematics, Springer-Verlag, 1994CrossRefGoogle Scholar
Wag, 1972.Wagoner, J. B., Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349370CrossRefGoogle Scholar
WW, 1993.Weiss, M. and Williams, B., Assembly, Novikov Conjectures, Rigidity and Index Theorems 2 (Oberwolfach, 1993), London Math Soc. Lecture Notes 227, Cambridge Univ. Press, Cambridge, 1995, pp. 332352Google Scholar