Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:18:25.110Z Has data issue: false hasContentIssue false

On principal bundles over a projective variety defined over a finite field

Published online by Cambridge University Press:  26 October 2009

Indranil Biswas
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India, [email protected]
Get access

Abstract

Let M be a geometrically irreducible smooth projective variety, defined over a finite field k, such that M admits a k-rational point x0. Let (M,x0/ denote the corresponding fundamental group-scheme introduced by Nori. Let EG be a principal G-bundle over M, where G is a reduced reductive linear algebraic group defined over the field k. Fix a polarization ξ on M. We prove that the following three statements are equivalent:

1. The principal G-bundle EG over M is given by a homomorphism (M,x0)→G.

2. There are integers b > a ≥ 1, such that the principal G-bundle (FbM)* EG is isomorphic to (FaM) * EG where FM is the absolute Frobenius morphism of M.

3. The principal G-bundle EG is strongly semistable, the degree(c2(ad(EG))c1 (ξ)d−2 = 0, where d = dimM, and the degree(c1(EG(χ))c1(ξ)d−1) = 0 for every character χ of G, where EG(χ) is the line bundle over M associated to EG for χ.

In [16], the equivalence between the first statement and the third statement was proved under the extra assumption that dimM = 1 and G is semisimple.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Biswas, I., Parameswaran, A. J. and Subramanian, S.: Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. Jour. 132 (2006), 148CrossRefGoogle Scholar
2.Biswas, I. and Holla, Y. I.: Comparison of fundamental group schemes of a projective variety and an ample hypersurface, Jour. Alg. Geom. 16 (2007), 547597CrossRefGoogle Scholar
3.Bogomolov, F. A.: Holomorphic tensors and vector bundles on projective varieties, Math. USSR-Izv. 13 (1978), 495555Google Scholar
4.Coiai, F. and Holla, Y. I.: Extensions of structure groups of principal bundles in positive characteristics, Jour. Reine Angew. Math. 595 (2006), 124Google Scholar
5.Deligne, P. and Milne, J. S.: Tannakian Categories, in: Hodge cycles, motives, and Shimura varieties (by P. Deligne, J. S. Milne, A. Ogus and K.-Y. Shih), pp. 101228, Lecture Notes in Mathematics 900, Springer-Verlag, Berlin-Heidelberg-New York, 1982CrossRefGoogle Scholar
6.Giraud, J.: Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften 179, Springer-Verlag, Berlin-New York, 1971Google Scholar
7.Lang, S.: Algebraic groups over finite fields, Amer. Jour. Math. 78 (1956), 555563CrossRefGoogle Scholar
8.Lange, H. and Stuhler, U.: Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Zeit. 156 (1977), 7383CrossRefGoogle Scholar
9.Langer, A.: Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004), 251276CrossRefGoogle Scholar
10.Langer, A.: Semistable principal G-bundles in positive characteristics, Duke Math. Jour. 128 (2005), 511540CrossRefGoogle Scholar
11.Laszlo, Y.: A non-trivial family of bundles fixed by the square of Frobenius, Comp. Ran. Acad. Sci. Paris 333 (2001), 651656CrossRefGoogle Scholar
12.Nori, M. V.: On the representations of the fundamental group scheme, Compos. Math. 33 (1976), 2941Google Scholar
13.Nori, M. V.: The fundamental group-scheme, Proc. Ind. Acad. Sci. (Math. Sci.) 91 (1982), 73122CrossRefGoogle Scholar
14.Ramanan, S. and Ramanathan, A.: Some remarks on the instability flag, Tôhoku Math. Jour. 36 (1984), 269291Google Scholar
15.Ramanathan, A.: Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129152CrossRefGoogle Scholar
16.Subramanian, S.: Strongly semistable bundles on a curve over a finite field, Arch. Math. 89 (2007), 6872CrossRefGoogle Scholar