Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:40:08.088Z Has data issue: false hasContentIssue false

Morphisme de Baum-Connes tordu par une représentation non unitaire

Published online by Cambridge University Press:  08 December 2009

Maria Paula Gomez-Aparicio
Affiliation:
Institut de Mathématiques de Jussieu, Projet d'algèbres d'Opérateurs et représentations, 175 rue du chevaleret, 75013 Paris, France. [email protected]
Get access

Abstract

Let G be a locally compact group and ρ a non-unitary finite dimensional representation of G. We consider tensor products of ρ by some unitary representations of G in order to define two Banach algebras analogous to the group C*-algebras, C*(G) and C*r(G). We calculate the K-theory of such algebras for a large class of groups satisfying the Baum-Connes conjecture.

Soit G un groupe localement compact et ρ une représentation de dimension finie de G non unitaire. On définit des algèbres de Banach analogues aux C*-algèbres de groupe, C*(G) et C*r(G), en considérant l'ensemble des représentations de la forme ρ ⊗ π, où π parcourt un ensemble de représentations unitaires de G. On calcule la K-théorie de ces algèbres pour une large classe de groupes vérifiant la conjecture de Baum-Connes.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

BCH94.Baum, P., Connes, A., and Higson, N., Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240291Google Scholar
Bos90.Bost, J. B., Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math. 101 (1990), 261333CrossRefGoogle Scholar
CEM01.Chabert, J., Echterhoff, S., and Meyer, R., Deux remarques sur l'application de Baum-Connes, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 607610Google Scholar
Cha03.Chatterji, I., Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups, Geom. Dedicata 96 (2003), 161177CrossRefGoogle Scholar
GA07a.Gomez-Aparicio, M. P., Propriété (T) et morphisme de Baum-Connes tordus par une représentation non-unitaire, Ph.D. thesis, Université de Paris VII, décembre 2007Google Scholar
GA07b.Gomez-Aparicio, M. P., Sur la propriété (T) tordue par un produit tensoriel, J. Lie Theory 17 (2007), 505524Google Scholar
GA08.Gomez-Aparicio, M. P., Représentations non-unitaires, morphisme de Baum-Connes et complétions inconditionnelles, to appear in Journal of Noncommutative Geometry, 2008Google Scholar
HG04.Higson, N. and Guentner, E., Group C*-algebras and K-theory, Noncommutative geometry, Lecture Notes in Math., vol. 1831, Springer, Berlin, 2004, pp. 137251Google Scholar
HK01.Higson, N. and Kasparov, G. G., E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 2374CrossRefGoogle Scholar
HLS02.Higson, N., Lafforgue, V., and Skandalis, G., Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330354CrossRefGoogle Scholar
JK95.Julg, P. and Kasparov, G., Operator K-theory for the group SU(n,1), J. Reine Angew. Math. 463 (1995), 99152 (English)Google Scholar
Jul97.Julg, P., Remarks on the Baum-Connes conjecture and Kazhdan's property T, Operator algebras and their applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 145153Google Scholar
Kas84.Kasparov, G. G., Lorentz groups: K-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541545Google Scholar
Kas88.Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147201CrossRefGoogle Scholar
Kaz67.Kazhdan, D. A., On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 7174Google Scholar
KS91.Kasparov, G. G. and Skandalis, G., Groups acting on buildings, operator K-theory, and Novikov's conjecture, K-Theory 4 (1991), no. 4, 303337CrossRefGoogle Scholar
KS03.Kasparov, G. G. and Skandalis, G., Groups acting properly on “bolic” spaces and the Novikov conjecture, Ann. of Math. (2) 158 (2003), no. 1, 165206Google Scholar
Laf00.Lafforgue, V., A proof of property (RD) for cocompact lattices of SL(3,R) and SL(3,C), J. Lie Theory 10 (2000), no. 2, 255267Google Scholar
Laf02a.Lafforgue, V., Banach KK-theory and the Baum-Connes conjecture, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 795812Google Scholar
Laf02b.Lafforgue, V., K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002), no. 1, 195Google Scholar
LG97.Le Gall, P. Y., Théorie de Kasparov équivariante et groupoïdes, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 695698Google Scholar
Par06.Paravicini, W., KK-theory for Banach algebras and proper groupoids, Ph.D. thesis, November 2006Google Scholar
Ska91.Skandalis, G., Kasparov's bivariant K-theory and applications, Expo. Math. 9 (1991), no. 3, 193250Google Scholar
Tu99.Tu, J. L., La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory 16 (1999), no. 2, 129184CrossRefGoogle Scholar
Tza00.Tzanev, K., C*-algèbres de Hecke et K-théorie, Ph.D. thesis, Université de Paris VII, 2000.Google Scholar