Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T16:48:33.212Z Has data issue: false hasContentIssue false

K-theory, reality, and duality

Published online by Cambridge University Press:  16 September 2014

Drew Heard
Affiliation:
Melbourne University, Australia, [email protected]
Vesna Stojanoska
Affiliation:
Massachusetts Institute of Technology, Cambridge MA, USA, [email protected]
Get access

Abstract

We present a new proof of Anderson's result that the real K-theory spectrum is Anderson self-dual up to a fourfold suspension shift; more strongly, we show that the Anderson dual of the complex K-theory spectrum KU is C2-equivariantly equivalent to Σ4KU, where C2 acts by complex conjugation. We give an algebro-geometric interpretation of this result in spectrally derived algebraic geometry and apply the result to calculate 2-primary Gross-Hopkins duality at height 1. From the latter we obtain a new computation of the group of exotic elements of the K(1)-local Picard group.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

And69.Anderson, D.W., Universal coefficient theorems for K-theory, mimeographed notes, Univ. California, Berkeley, Calif, 1969.Google Scholar
Ati66.Atiyah, M. F., K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367386. MR 0206940 (34 #6756)CrossRefGoogle Scholar
Bök81.Marcel, Bökstedt, Universal coefficient theorems for equivariant K and KO -theory, PhD Thesis, 1981.Google Scholar
Bou79.Bousfield, A. K., The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257281. MR 551009 (80m:55006)Google Scholar
BR07.Baker, Andrew and Richter, Birgit, Realizability of algebraic Galois extensions by strictly commutative ring spectra, Trans. Amer. Math. Soc. 359 (2007), no. 2, 827857 (electronic).Google Scholar
De171.Deligne, Pierre, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 557. MR 0498551 (58 #16653a)Google Scholar
Dug05.Dugger, Daniel, An Atiyah-Hirzebruch spectral sequence for KR-theory, K -Theory 35 (2005), no. 3-4, 213256 (2006). MR MR2240234 (2007g:19004)CrossRefGoogle Scholar
EKMM97.Elmendorf, A. D., Kriz, I., Mandell, M. A., and May, J. P., Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997, With an appendix by M. Cole. MR 1417719 (97h:55006)Google Scholar
Faj95.Fajstrup, Lisbeth, Tate cohomology of periodic K-theory with reality is trivial, Trans. Amer. Math. Soc. 347 (1995), no. 5, 18411846.Google Scholar
FHM03.Fausk, H., Hu, P., and May, J. P., Isomorphisms between left and right adjoints, Theory Appl. Categ. 11 (2003), No. 4, 107131. MR 1988072 (2004d:18006)Google Scholar
FMS07.Daniel, S. Freed, Gregory W. Moore, and Segal, Graeme, The uncertainty of fluxes, Comm. Math. Phys. 271 (2007), no. 1, 247274. MR 2283960 (2008j:58051b)Google Scholar
GH12.Goerss, Paul G and Henn, Hans-Werner, The brown-comenetz dual of the k(2)-local sphere at the prime 3, arXiv preprint arXiv:1212.2836, 2012.Google Scholar
GHMR05.Goerss, P., Henn, H.-W., Mahowald, M., and Rezk, C., A resolution of the K(2)-local sphere at the prime 3, Ann. of Math. (2) 162 (2005), no. 2, 777822. MR 2183282 (2006j:55016)CrossRefGoogle Scholar
GHMR12.Goerss, Paul, Henn, Hans-Werner, Mahowald, Mark, and Rezk, Charles, On Hopkins' Picard groups for the prime 3 and chromatic level 2, arXiv preprint arXiv:1210.7033, 2012.Google Scholar
GM95.Greenlees, J. P. C. and May, J. P., Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii + 178. MR 1230773 (96e:55006)Google Scholar
GS96.Greenlees, J. P. C. and Sadofsky, Hal, The Tate spectrum of vn-periodic complex oriented theories, Math. Z. 222 (1996), no. 3, 391405. MR 1400199 (97d:55010)Google Scholar
Har66.Hartshorne, Robin, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 0222093 (36 #5145)Google Scholar
HG94.Hopkins, M. J. and Gross, B. H., The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 7686. MR 1217353 (94k:55009)Google Scholar
HL13.Hopkins, Michael and Lurie, Jacob, Ambidexterity in K(n)-local stable homotopy theory, Available at http://www.math.harvard.edu/~lurie/papers/Ambidexterity.pdf, 2013.Google Scholar
HM07.Hahn, Rebekah and Mitchell, Stephen, Iwasawa theory for K(1)-local spectra, Trans. Amer. Math. Soc. 359 (2007), no. 11, 52075238. MR 2327028 (2008h:55005)Google Scholar
HMS94.Hopkins, Michael J., Mahowald, Mark, and Sadofsky, Hal, Constructions of elements in Picard groups, Topology and representation theory (Evanston, IL, 1992), Contemp. Math., vol. 158, Amer. Math. Soc., Providence, RI, 1994, pp. 89126. MR 1263713 (95a:55020)Google Scholar
Hop.Hopkins, Michael J, K(1)-local E-ring spectra, Available at http://www.math.rochester.edu/people/faculty/doug/otherpapers/knlocal.pdf.Google Scholar
HS99.Hovey, Mark and Sadofsky, Hal, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), no. 1, 284302. MR 1722151 (2000h:55017)Google Scholar
HS05.Hopkins, M. J. and Singer, I. M., Quadratic functions in geometry, topology, and M-theory, J. Differential Geom. 70 (2005), no. 3, 329452. MR 2192936 (2007b:53052)Google Scholar
Kar01.Karoubi, Max, A descent theorem in topological K-theory, K -Theory 24 (2001), no. 2, 109114. MR 1869624 (2002m:19005)Google Scholar
KS07.Kamiya, Yousuke and Shimomura, Katsumi, Picard groups of some local categories, Publ. Res. Inst. Math. Sci. 43 (2007), no. 2, 303314. MR 2341012 (2008e:55011)Google Scholar
LN12.Lawson, Tyler and Naumann, Niko, Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2, arXiv preprint arXiv:l2O3.l696, 2O12.Google Scholar
Lur12.Lurie, Jacob, Derived Algebraic Geometry XIV: Representability Theorems, Available at http://http://www.math.harvard.edu/~lurie/papers/DAG-XIV.pdf,2012.Google Scholar
May96.May, J. P., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996, With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. MR 1413302 (97k:55016)CrossRefGoogle Scholar
MM13.Mathew, Akhil and Meier, Lennart, Affineness and chromatic homotopy theory, arXiv preprint arXiv:1311.0514, 2013.Google Scholar
Nee96.Neeman, Amnon, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205236. MR 1308405 (96c:18006)Google Scholar
Rog08.Rognes, John, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii + 137.Google Scholar
Sto12.Stojanoska, Vesna, Duality for topological modular forms, Doc. Math. 17 (2012), 271311. MR 2946825Google Scholar
Str00.Strickland, N. P., Gross-Hopkins duality, Topology 39 (2000), no. 5, 10211033. MR 1763961 (2001d:55006)CrossRefGoogle Scholar
Yos75.Yosimura, Zen-ichi, Universal coefficient sequences for cohomology theories of CW-spectra, Osaka J. Math. 12 (1975), no. 2, 305323. MR 0388375 (52 #9212)Google Scholar