Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T12:52:44.190Z Has data issue: false hasContentIssue false

Trichinella spiralis: genome database searches for the presence and immunolocalization of protein disulphide isomerase family members

Published online by Cambridge University Press:  05 December 2014

C.P. Freitas
Affiliation:
Centro Hospitalar de Lisboa Central, EPE – Serviço de Anatomia Patológica, Rua José António Serrano, 1150-199Lisboa, Portugal
I. Clemente
Affiliation:
Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Portugal
T. Mendes
Affiliation:
Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Portugal
C. Novo*
Affiliation:
Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Portugal
*

Abstract

The formation of nurse cells in host muscle cells during Trichinella spiralis infection is a key step in the infective mechanism. Collagen trimerization is set up via disulphide bond formation, catalysed by protein disulphide isomerase (PDI). In T. spiralis, some PDI family members have been identified but no localization is described and no antibodies specific for T. spiralis PDIs are available. In this work, computational approaches were used to search for non-described PDIs in the T. spiralis genome database and to check the cross-reactivity of commercial anti-human antibodies with T. spiralis orthologues. In addition to a previously described PDI (PDIA2), endoplasmic reticulum protein (ERp57/PDIA3), ERp72/PDIA4, and the molecular chaperones calreticulin (CRT), calnexin (CNX) and immunoglobulin-binding protein/glucose-regulated protein (BIP/GRP78), we identified orthologues of the human thioredoxin-related-transmembrane proteins (TMX1, TMX2 and TMX3) in the genome protein database, as well as ERp44 (PDIA10) and endoplasmic reticulum disulphide reductase (ERdj5/PDIA19). Immunocytochemical staining of paraffin sections of muscle infected by T. spiralis enabled us to localize some orthologues of the human PDIs (PDIA3 and TMX1) and the chaperone GRP78. A theoretical three-dimensional model for T. spiralis PDIA3 was constructed. The localization and characteristics of the predicted linear B-cell epitopes and amino acid sequence of the immunogens used for commercial production of anti-human PDIA3 antibodies validated the use of these antibodies for the immunolocalization of T. spiralis PDIA3 orthologues. These results suggest that further study of the role of the PDIs and chaperones during nurse cell formation is desirable.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.CrossRefGoogle ScholarPubMed
Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195201.CrossRefGoogle ScholarPubMed
Benkert, P., Biasini, M. & Schwede, T. (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343350.CrossRefGoogle ScholarPubMed
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L. & Schwede, T. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research (Web Server issue)W252W258. doi:10.1093/nar/gku340 .CrossRefGoogle ScholarPubMed
Capo, V.A., Despommier, D.D. & Polvere, R.I. (1998) Trichinella spiralis: vascular endothelial growth factor is up-regulated within the nurse cell during the early phase of its formation. Journal of Parasitology 84, 209214.CrossRefGoogle ScholarPubMed
Cheng, J., Randall, A.Z., Sweredoski, M.J. & Baldi, P. (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Research 33, (Web Server issue)W72W76.CrossRefGoogle ScholarPubMed
Dzik, J.M. (2006) Molecules released by helminth parasites involved in host colonization. Acta Biochimica Polonica 53, 3364.CrossRefGoogle ScholarPubMed
Epe, C., Kohlmetz, C. & Schnieder, T. (1998) A recombinant protein disulphide isomerase homologue from Ancylostoma caninum. Parasitology Research 84, 763766.CrossRefGoogle ScholarPubMed
Epe, C., Berens, C. & Strube, C. (2007) Evaluation of the transcriptation level of the proteins disulfide isomerase in different stages from Ancylostoma caninum with a real-time PCR assay. Parasitology Research 101, 15891595.CrossRefGoogle Scholar
Fang, L., Sun, L., Yang, J., Gu, Y., Zhan, B., Huang, J. & Zhu, X. (2014) Heat shock protein 70 from Trichinella spiralis induces protective immunity in BALB/c mice by activating dendritic cells. Vaccine 32, 44124419.CrossRefGoogle ScholarPubMed
Guex, N. & Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18, 27142723.CrossRefGoogle Scholar
Johnstone, I.L. (2000) Cuticle collagen genes. Expression in Caenorhabditis elegans. Trends in Genetics 16, 2127.CrossRefGoogle ScholarPubMed
Kang, Y.J., Jo, J.O., Cho, M.K., Yu, H.S., Ock, M.S. & Cha, H.J. (2011) Trichinella spiralis infection induces angiogenic factor thymosin beta4 expression. Veterinary Parasitology 181, 222228.CrossRefGoogle ScholarPubMed
Kiefer, F., Arnold, K., Künzli, M., Bordoli, L. & Schwede, T. (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Research 37, D387D392.CrossRefGoogle ScholarPubMed
Kozlov, G., Määttänen, P., Thomas, D.Y. & Gehring, K. (2010) A structural overview of the PDI family of proteins. FEBS Journal 277, 39243936.CrossRefGoogle ScholarPubMed
Maizels, R.M., Blaxter, M.L. & Selkirk, M.E. (1993) Forms and functions of nematode surfaces. Experimental Parasitology 77, 380384.CrossRefGoogle ScholarPubMed
Mitreva, M., Jasmer, D.P., Zarlenga, D.S., Wang, Z., Abubucker, S., Martin, J., Taylor, C.M., Yin, Y., Fulton, L., Minx, P., Yang, S.P., Warren, W.C., Fulton, R.S., Bhonagiri, V., Zhang, X., Hallsworth-Pepin, K., Clifton, S.W., McCarter, J.P., Appleton, J., Mardis, E.R. & Wilson, R.K. (2011) The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics 43, 228235.CrossRefGoogle ScholarPubMed
Parkhouse, R.M. & Ortega-Pierres, G. (1984) Stage-specific antigens of Trichinella spiralis. Parasitology 88, 623630.CrossRefGoogle ScholarPubMed
Polvere, R.I., Kabbash, C.A., Capo, V.A., Kadan, I. & Despommier, D.D. (1997) Trichinella spiralis: synthesis of type IV and type VI collagen during nurse cell formation. Experimental Parasitology 86, 191199.CrossRefGoogle ScholarPubMed
Pozio, E., La Rosa, G., Rossi, P. & Murrell, K.D. (1992) Biological characterization of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 647653.CrossRefGoogle ScholarPubMed
Robinson, M.W., Massie, D.H. & Connolly, B. (2007) Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis. Molecular and Biochemical Parasitology 151, 917.CrossRefGoogle ScholarPubMed
Vercauteren, I., Geldhof, P., Peelaers, I., Claerebout, E., Berx, G. & Vercruysse, J. (2003) Identification of excretory–secretory products of larval and adult Ostertagia ostertagi by immunoscreening of cDNA libraries. Molecular and Biochemical Parasitology 126, 201208.CrossRefGoogle ScholarPubMed
Wang, C.H. & Bell, R.G. (1992) Characterization of cellular and molecular immune effectors against Trichinella spiralis newborn larvae in vivo. Cellular and Molecular Biology 38, 311325.Google ScholarPubMed
Wilson, W.R., Tuan, R.S., Shepley, K.J., Freedman, R.B., Greene, B.M., Awadzi, K. & Unnasch, T.R. (1994) The Onchocerca volvulus homologue of the multifunctional polypeptide protein disulfide isomerase. Molecular and Biochemical Parasitology 68, 103107.CrossRefGoogle ScholarPubMed
Winter, A.D. & Page, A.P. (2000) Prolyl 4-hydroxylase is an essential procollagen-modifying enzyme required for exoskeleton formation and the maintenance of body shape in the nematode Caenorhabditis elegans. Molecular and Cellular Biology 20, 40844093.CrossRefGoogle ScholarPubMed
Yu, Y.R., Deng, M.J., Lu, W.W., Zhang, J.S., Jia, M.Z., Huang, J. & Qi, Y.F. (2014) Endoplasmic reticulum stress-mediated apoptosis is activated in intestines of mice with Trichinella spiralis infection. Experimental Parasitology 145, 16.CrossRefGoogle ScholarPubMed