Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T16:21:53.971Z Has data issue: false hasContentIssue false

Steinernema pwaniensis n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Tanzania

Published online by Cambridge University Press:  14 January 2016

V. Půža*
Affiliation:
Laboratory of Entomopathogenic Nematodes, Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, The Czech Republic
J. Nermut
Affiliation:
Laboratory of Entomopathogenic Nematodes, Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, The Czech Republic
Z. Mráček
Affiliation:
Laboratory of Entomopathogenic Nematodes, Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, The Czech Republic
S. Gengler
Affiliation:
Veterinary and Agrochemical Research Centre (VAR), Brussels, Belgium
S. Haukeland
Affiliation:
International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
*

Abstract

A new species of entomopathogenic nematode, Steinernema pwaniensis n. sp., belonging to the glaseri group, is described from Tanzania. The infective juveniles of S. pwaniensis n. sp. are characterized by a body length of 978 μm (808–1131), distance from anterior end to excretory pore of 86 μm (80–95) and a tail length of 87 μm (75–95). The ratios a, c and E% of S. pwaniensis n. sp. are substantially lower than those of all other African ‘glaseri’ group members. The first-generation males of S. pwaniensis n. sp. can be distinguished by a large spicule length of 92 μm (80–97) and by the absence of the caudal mucron, while second-generation males possess a short spine-like mucron. First-generation females have a peg-like tail tip bearing three spine-like projections. Second-generation females can be recognized by a slightly protruding vulva and well-developed post-anal swelling. The new species is further characterized by sequences of the internal transcribed spacer (ITS) and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that S. pwaniensis n. sp. forms a strongly supported monophyletic clade with two other East African species, S. ethiopiense and S. karii.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-Elbary, N.A., Shamseldean, M.S., Stock, S.P. & Abu-Shady, N.M. (2012) Diversity of entomopathogenic nematode species (Heterorhabditidae and Steinernematidae) in Egypt. Egyptian Journal of Agronematology 11, 333353.Google Scholar
Adams, B.J. (1998) Species concept and the evolutionary paradigm in modern nematology. Journal of Nematology 30, 121.Google Scholar
Adams, B.J., Fodor, A., Koppenhöfer, H.S., Stackebrandt, E., Stock, S.P. & Klein, M.G. (2006) Reprint of ‘Biodiversity and systematics of nematode–bacterium entomopathogens’ [Biol. Control 37 (2006) 32–49]. Biological Control 38, 421.Google Scholar
Akyazi, F., Ansari, M.A., Ahmed, B.I., Crow, W.T. & Mekete, T. (2012) First record of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Nigerian soil and their morphometrical and ribosomal DNA sequence analysis. Nematologia Mediterranea 40, 95100.Google Scholar
Courtney, W.D., Polley, D. & Miller, V.I. (1955) TAF, an improved fixative in nematode technique. Plant Disease Reporter 39, 570571.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hatting, J., Stock, S.P. & Hazir, S. (2009) Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology 102, 120128.Google Scholar
Kanga, F.N., Waeyenberge, L., Hauser, S. & Moens, M. (2012) Distribution of entomopathogenic nematodes in Southern Cameroon. Journal of Invertebrate Pathology 109, 4151.Google Scholar
Malan, A.P., Nguyen, K.B. & Addison, M.F. (2006) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protection 12, 6569.Google Scholar
Malan, A.P., Knoetze, R. & Moore, S.D. (2011) Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology 108, 115125.Google Scholar
Mekete, T., Gaugler, R., Nguyen, K.B., Mandefro, W. & Tessera, M. (2005) Biogeography of entomopathogenic nematodes in Ethiopia. Nematropica 35, 3136.Google Scholar
Mráček, Z., Půža, V. & Nermut', J. (2014) Steinernema poinari sp. n. (Nematoda: Steinernematidae) a new entomopathogenic nematode from Czech Republic. Zootaxa 3760, 336350.Google Scholar
Mráček, Z., Půža, V. & Nermut', J. (2015) The significance of the tail projections in female entomopathogenic nematodes within the family Steinernematidae. Journal of Helminthology. doi:10.1017/S0022149X14000935.Google Scholar
Mwaitulo, S., Haukeland, S., Sæthre, M.G., Laudisoit, A. & Maerere, A.P. (2011) First report of entomopathogenic nematodes from Tanzania and their virulence against larvae and adults of the banana weevil Cosmopolites sordidus (Coleoptera: Curculionidae). International Journal of Tropical Insect Science 31, 154161.Google Scholar
Mwaniki, S.W., Nderitu, J.H., Olubayo, F., Kimenju, J.W. & Nguyen, K. (2008) Factors influencing the occurrence of entomopathogenic nematodes in the Central Rift Valley Region of Kenya. African Journal of Ecology 46, 7984.Google Scholar
Nei, M. & Kumar, S. (2000) Molecular evolution and phylogenetics. 333 pp. New York, NY, USA, Oxford University Press.CrossRefGoogle Scholar
Nguyen, K.B. & Smart, G.C. (1995) Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 41, 183190.Google Scholar
Nguyen, K.B. & Smart, G.C. (1997) Scanning electron microscope studies of spicules and gubernacula of Steinernema spp. (Nemata: Steinernematidae). Nematologica 43, 465480.Google Scholar
Nguyen, K.B. (2007) Methodology, morphology and identification. pp. 59119 in Nguyen, K.B. & Hunt, D.J. (Eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nematology Monographs and Perspectives, vol. 5. Leiden, The Netherlands, Brill.Google Scholar
Poinar, G.O. Jr (1979) Nematodes for biological control of insects. 249 pp. Boca Raton, Florida, USA, CRC Press.Google Scholar
Půža, V., Chundelová, D., Nermut', J., Žurovcová, M. & Mráček, Z. (2015) Intra-individual variability of ITS region in entomopathogenic nematodes (Steinernematidae: Nematoda): implications for their taxonomy. Biocontrol 60, 547554.Google Scholar
Rzhetsky, A. & Nei, M. (1992) A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9, 945967.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 6769.Google Scholar
Shamseldean, M.M. & Abd-Elgawad, M.M. (1994) Natural occurrence of insect pathogenic nematodes (Rhabditida: Heterorhabditidae) in Egyptian soils. Afro-Asian Journal of Nematology 4, 151154.Google Scholar
Spiridonov, S.E., Reid, A.P., Podrucka, K., Subbotin, S.A. & Moens, M. (2004) Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1–5.8S–ITS2 region of rDNA and morphological features. Nematology 6, 547566.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Vrain, T.C., Wakarchuk, D.A., Levesque, A.C. & Hamilton, R.I. (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15, 563573.Google Scholar
Zadji, L., Baimey, H., Afouda, L., Houssou, F.G., Waeyenberge, L., De Sutter, N., Moens, M. & Decraemer, W. (2013) First record on the distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Southern Benin. Russian Journal of Nematology 21, 117130.Google Scholar