Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T05:04:04.339Z Has data issue: false hasContentIssue false

Small mammals: paratenic hosts for species of Toxocara in eastern Slovakia

Published online by Cambridge University Press:  30 January 2012

D. Antolová*
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, Slovak Republic
K. Reiterová
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, Slovak Republic
M. Stanko
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, Slovak Republic Institute of Zoology, Slovak Academy of Sciences, Löfflerova 10, Košice, Slovak Republic
G. Zalesny
Affiliation:
Department of Invertebrate Systematics and Ecology, Institute of Biology, Wroclaw University of Environmental and Life Sciences, Kozuchowska 5b, Wroclaw, Poland
J. Fričová
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, Slovak Republic
E. Dvorožňáková
Affiliation:
Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, Košice, Slovak Republic
*
* Fax: +421 55 633 14 14, E-mail: [email protected]

Abstract

Toxocara spp., an aetiological agent of a serious helminthozoonosis, is a common roundworm of domestic and wild carnivores worldwide. The study aimed to estimate the seroprevalence of Toxocara in small mammals from different localities in eastern Slovakia. Anti-Toxocara antibodies were detected in 6.4% out of 2140 examined animals trapped in eastern Slovakia. Due to their high density and observed high seroprevalence of toxocariasis, Apodemus agrarius, A. flavicollis, Myodes glareolus and Mus spicilegus (10.9, 4.2, 3.6 and 11.2%, respectively) represent important sources of the infection. A significant correlation between type of food and Toxocara positivity was detected: granivores (7.2%) and invertebratophages (7.1%) were positive more frequently than herbivores (2.1%). In the years monitored, cyclic changes of seroprevalence were observed. A higher prevalence of antibodies in the spring was followed by a decrease in summer. In autumn, seroprevalence started to rise and stayed at a similar level through the winter. Seroprevalence of the examined animals confirms their contact with Toxocara spp. and demonstrates the presence of the aetiological agent in the monitored locality. Areas with a high prevalence of infected animals present constant infectious pressure on definitive hosts, thus also increasing infection risk for humans and paratenic hosts. The study confirmed the contact of small mammals with Toxocara spp. and demonstrated the presence and circulation of an aetiological agent in the localities monitored in eastern Slovakia.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Madi, M.A., Behnke, J.M., Lewis, J.W. & Gilbert, F.S. (1998) Descriptive epidemiology of Heligmosomoides polygyrus in Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 72, 93100.CrossRefGoogle Scholar
Anděra, M. & Horáček, I. (2005) Poznáváme naše savce. 2nd edn. 328 pp. Prague, Nakladatelství Sobotáles (in Czech).Google Scholar
Antolová, D., Reiterová, K., Miterpáková, M., Stanko, M. & Dubinský, P. (2004) Circulation of Toxocara spp. in suburban and rural ecosystems in the Slovak Republic. Veterinary Parasitology 126, 317324.CrossRefGoogle ScholarPubMed
Arneberg, P., Skorping, A., Grenfell, B. & Read, A.F. (1998) Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London, Series B 265, 12831289.CrossRefGoogle Scholar
Behnke, J.M., Lewis, J.W., Mohd Zain, S.N. & Gilbert, F.S. (1999) Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. Journal of Helminthology 73, 3144.CrossRefGoogle ScholarPubMed
Bruňanská, M., Dubinský, P. & Reiterová, K. (1995) Toxocara canis: ultrastructural aspects of larval moulting in the maturing eggs. International Journal of Parasitology 25, 683690.CrossRefGoogle Scholar
Bryja, J. & Rehák, Z. (2002) Další doklad současné expanse myšice temnopásé (Apodemus agrarius) na Moravě. Lynx (Praha) 33, 6977(in Czech).Google Scholar
Cuéllar, C., Fenoy, S. & Guillén, J.L. (1995) Cross-reactions of sera from Toxascaris leonina and Ascaris suum infected mice with Toxocara canis, Toxascaris leonina and Ascaris suum antigens. International Journal of Parasitology 25, 731739.CrossRefGoogle ScholarPubMed
Dalimi, A., Sattari, A. & Motamedi, G. (2006) Study on intestinal helminthes of dogs, foxes and jackals in the western part of Iran. Veterinary Parasitology 142, 129133.CrossRefGoogle Scholar
De Savigny, D.H. (1975) In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serological tests for visceral larva migrans. Journal of Parasitology 61, 781782.CrossRefGoogle Scholar
Dubinský, P., Havasiová-Reiterová, K., Peťko, B., Hovorka, I. & Tomašovičová, O. (1995) Role of small mammals in the epidemiology of toxocariasis. Parasitology 110, 187193.CrossRefGoogle ScholarPubMed
Dudich, A. & Štollmann, A. (1986) Doplnky a dodatky k rozšíreniu ryšavky tmavopásej – Apodemus agrarius (Pallas) na území Slovenskej socialistickej republiky. Biológia, Bratislava 41, 597604(in Slovak).Google Scholar
Gillespie, S.H. (1988) The epidemiology of Toxocara canis. Parasitology Today 4, 180182.CrossRefGoogle ScholarPubMed
Havasiová-Reiterová, K., Tomašovičová, O. & Dubinský, P. (1995) Effect of various doses of infective Toxocara canis and Toxocara cati eggs of the humoral response and distribution of larvae in mice. Parasitology Research 81, 1317.CrossRefGoogle ScholarPubMed
Hildebrand, J., Zalesny, G., Okulewicz, A. & Baszkiewicz, K. (2009) Preliminary studies on the zoonotic importance of rodents as a reservoir of toxocariasis from recreation grounds in Wroclaw (Poland). Helminthologia 46, 8084.CrossRefGoogle Scholar
Kinčeková, J., Banovčin, P., Fedor, M., Dubinský, P. Jr, Poláček, H., Pavlinová, J. & Šimeková, K. (2008) A case of complicated cerebral toxocariasis in a 4-year old child. Helminthologia 45, 169172.CrossRefGoogle Scholar
Luty, T. (2001) Prevalence of species of Toxocara in dogs, cats and red foxes from the Poznan region, Poland. Journal of Helminthology 75, 153156.Google ScholarPubMed
Macholán, M. (1999) Mus spicilegus Petényi, 1882. pp. 288289in Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralík, V. & Zima, J. (Eds) The atlas of European mammals. London, T & AD Poyser Ltd and Academic Press.Google Scholar
Meijer, T., Mattsson, R., Angerbjörn, A., Osterman-Lind, E., Fernández-Aguilar, X. & Gavier-Widén, D. (2011) Endoparasites in the endangered Fennoscandian population of arctic foxes (Vulpes lagopus) European Journal of Wildlife Research 57, 923927.CrossRefGoogle Scholar
Miterpáková, M., Hurníková, Z., Antolová, D. & Dubinský, P. (2009) Endoparasites of red fox (Vulpes vulpes) in the Slovak Republic with the emphasis on zoonotic species Echinococcus multilocularis and Trichinella spp. Helminthologia 46, 7379.CrossRefGoogle Scholar
Ondríková, J. & Stanko, M. (2009) Preliminary report on the helminth fauna of the striped field mouse (Apodemus agrarius). Folia Faunistica Slovaca 14, 123126.Google Scholar
Overgaauw, P.A.M. & van Knapen, F. (2000) Toxocarosis. pp. 213222in Macpherson, C.N.L., Muslin, F.X. & Wandeler, A.I. (Eds) Dogs, zoonoses and public health. Wallingford, CABI Publishing.CrossRefGoogle Scholar
Reichholf, J. (1996) Cicavce (Sprievodca prírodou). 1st edn.287 pp. Bratislava, Ikar (in Slovak).Google Scholar
Reiterová, K., Tomašovičová, O. & Dubinský, P. (2003) Influence of maternal infection on offspring immune response in murine larval toxocariasis. Parasite Immunology 25, 361368.CrossRefGoogle ScholarPubMed
Reperant, L.A., Hegglin, D., Tanner, I., Fischer, C. & Deplazes, P. (2009) Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 136, 329337.CrossRefGoogle ScholarPubMed
Rohlf, F.J. & Sokal, R.R. (1995) Biometry and statistical tables. 3rd edn. New York, W.H. Freeman.Google Scholar
Saeed, I., Maddox-Hyttel, C., Monrad, J. & Kapel, C.M.O. (2006) Helminths of red foxes (Vulpes vulpes) in Denmark. Veterinary Parasitology 139, 168179.CrossRefGoogle ScholarPubMed
Sládek, J. & Mošanský, A. (1985) Cicavce okolo nás. 1st edn. 247 pp. Martin, Osveta (in Slovak).Google Scholar
Stanko, M. (1994) Bionomics and ecology of Apodemus agrarius (Pall.) (Rodentia: Muridae) on Východoslovenská Nížina lowland. II. Population structure and density. Biologia, Bratislava 49, 797805.Google Scholar
Sviben, M., Čavlek, T.V., Missoni, E.M. & Galinovič, G.M. (2009) Seroprevalence of Toxocara canis infection among asymptomatic children with eosinophilia in Croatia. Journal of Helminthology 83, 369371.CrossRefGoogle ScholarPubMed
Szabová, E., Juriš, P., Miterpáková, M., Antolová, D., Papajová, I. & Šefčíková, H. (2007) Prevalence of important parasites in dog populations from the Slovak Republic. Helminthologia 44, 170176.CrossRefGoogle Scholar
Tomašovičová, O., Havasiová-Reiterová, K., Dubinský, P. & Hovorka, I. (1993) Intrauterine and lactogenic transfer of Toxocara canis larvae in paratenic hosts. Helminthologia 30, 111113.Google Scholar
Treml, F. & Nesňálová, E. (1993) Serological screening of the occurrence of antibodies to leptospires in free-living small mammals. Veterinary Medicine 38, 559568.Google Scholar