Article contents
Sequence variability in internal transcribed spacers of nuclear ribosomal DNA among isolates of the oxyurid nematodes Syphacia obvelata and Aspiculuris tetraptera from mice reared in laboratories in China
Published online by Cambridge University Press: 09 January 2015
Abstract
This study examined sequence variability in internal transcribed spacers (ITS) of nuclear ribosomal DNA among Syphacia obvelata and Aspiculuris tetraptera isolates from laboratory mice from different geographical locations in China. ITS1, 5.8S and ITS2 rDNA were amplified separately from adult S. obvelata and A. tetraptera individuals by polymerase chain reaction (PCR), and the amplicons were subjected to sequencing from both directions. The lengths of the sequences of ITS1, 5.8S and ITS2 rDNA from both nematodes were 314 bp and 456 bp, 157 bp, and 273 bp and 419 bp, respectively. The intraspecific sequence variations in S. obvelata ITS1 were 0–0.3%. For A. tetraptera they were 0–0.7% in ITS1 and 0–1.0% in ITS2. However, the interspecific sequence differences among members of the infraorder Oxyuridomorpha were significantly higher, being 54.0–65.5% for ITS1 and 55.3–64.1% for ITS2. Phylogenetic analysis based on the combined partial sequences of ITS1 and ITS2 using three inference methods – Bayesian inference, maximum likelihood and maximum parsimony – revealed that all the S. obvelata and A. tetraptera samples formed independent monophyletic groups. Syphacia obvelata was closer to Syphacia muris than to A. tetraptera, consistent with morphological classification. These results demonstrate that ITS1 and ITS2 rDNA sequences are useful markers for population genetic studies of oxyurid nematodes.
- Type
- Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
- 4
- Cited by