Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T12:40:40.941Z Has data issue: false hasContentIssue false

Responses of Heterodera glycines and Meloidogyne incognita to exogenously applied neuromodulators

Published online by Cambridge University Press:  01 December 2007

E.P. Masler*
Affiliation:
Nematology Laboratory, US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Ave., Beltsville MD 20705, USA
*
*Fax: 301-504-5589 E-mail: [email protected]

Abstract

Biogenic amines regulate important behaviours in nematodes and are associated with pharyngeal activity in plant-parasitic nematodes. A robust behavioural assay based upon nematode body movements was developed to expand the study of these and other neuroregulators in plant-parasitic nematodes. Dopamine, octopamine and serotonin each had significant but differing effects on the behaviour of soybean cyst nematode Heterodera glycines and root-knot nematode Meloidogyne incognita juveniles. Body movement frequency was increased twofold in H.glycines by 5 mM dopamine (P = 0.0001), but decreased by 50 mM dopamine in H. glycines (88%) and M. incognita (53%) (P <  0.0001). Movement frequency in both species was increased by 50–70% (P <  0.0001) by 50 mM octopamine, and 5 mM octopamine increased M. incognita movement frequency more than twofold (P <  0.0001). Movement frequency in each species was reduced by more than 90% by 5 mM serotonin (P <  0.0001). While amplitude of body movement in H. glycines was unaffected by any amine, it was significantly reduced in M.incognita by all amines (P <  0.0006). Stylet pulsing frequencies in either species were unaffected by dopamine or octopamine, but 5 mM serotonin stimulated pulsing in H. glycines by nearly 13-fold (P <  0.0001) and in M. incognita by more than 14-fold (P <  0.0001). The invertebrate neuropeptide FLRFamide (N-Phe-Leu-Arg-Phe) increased M. incognita body movement frequency 45% (P = 0.02) at 1 mM but did not affect stylet activity. Finally, H. glycines egg hatch was completely suppressed by 50 mM serotonin, and partially suppressed by 50 mM dopamine (75%; P <  0.0001) and 50 mM octopamine (55%; P <  0.0001).

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

 

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

References

Avery, L. & Horvitz, H.R. (1990) Effect of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology 253, 263270.CrossRefGoogle ScholarPubMed
Bakhetia, M., Charlton, W., Atkinson, H.J. & McPherson, M.J. (2005) RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Molecular Plant Microbe Interactions 18, 10991106.CrossRefGoogle ScholarPubMed
Chaudhuri, J. & Donahue, M.J. (1989) Serotonin receptors in tissues of adult Ascaris suum. Molecular and Biochemical Parasitology 35, 191198.CrossRefGoogle ScholarPubMed
Chen, Q., Rehman, S., Smant, G. & Jones, J.T. (2005) Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Molecular Plant Microbe Interactions 18, 621625.CrossRefGoogle ScholarPubMed
Hardaker, L.A., Singer, E., Kerr, R., Zhou, G. & Schafer, W.R. (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. Journal of Neurobiology 49, 303313.CrossRefGoogle ScholarPubMed
Hobson, R.J., Hapiak, V.M., Xiao, H., Buehrer, K.L., Komuniecki, P.R. & Komuniecki, R.W. (2006) SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172, 159169.CrossRefGoogle ScholarPubMed
Horvitz, H.R., Chalfie, M., Trent, C., Sulston, J.E. & Evans, P.D. (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 10121014.CrossRefGoogle ScholarPubMed
Jonz, M.G., Riga, E., Mercier, A.J. & Potter, J.W. (2001) Effects of 5-HT (serotonin) on reproductive behaviour in Heterodera schachtii (Nematoda). Canadian Journal of Zoololgy 79, 17271732.CrossRefGoogle Scholar
Komuniecki, R.W., Hobson, R.J., Rex, E.B., Hapiak, V.M. & Komuniecki, P.R. (2004) Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans? Molecular and Biochemical Parasitology 137, 111.CrossRefGoogle ScholarPubMed
Li, C. (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131, S109S127.CrossRefGoogle ScholarPubMed
McClure, M.A. & von Mende, N. (1987) Induced salivation in plant-parasitic nematodes. Phytopathology 77, 14631469.CrossRefGoogle Scholar
McVeigh, P., Leech, S.L., Mair, G.R., Marks, N.J., Geary, T.G. & Maule, A.G. (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. International Journal for Parasitology 35, 10431060.CrossRefGoogle ScholarPubMed
Mousley, A., Marks, N.J., Halton, D.W., Geary, T.G., Thompson, D.P. & Maule, A.G. (2004) Arthropod FMRFamide-related peptides modulate muscle activity in helminthes. International Journal for Parasitology 34, 755768.CrossRefGoogle Scholar
Niacaris, T. & Avery, L. (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. Journal of Experimental Biology 206, 223231.CrossRefGoogle ScholarPubMed
Perry, R.N. & Maule, A.G. (2004) Physiological and biochemical basis of behaviour. pp. 197238in Gaugler, R. & Bilgrami, A.L. (Eds) Nematode behaviour. Wallingford UK, CAB International.CrossRefGoogle Scholar
Reinitz, C.A. & Stretton, A.O. (1996) Behavioral and cellular effects of serotonin on locomotion and male mating posture in Ascaris suum (Nematoda). Journal of Comparative Physiology A 178, 655667.CrossRefGoogle ScholarPubMed
Rex, E. & Komuniecki, R.W. (2002) Characterization of a tyramine receptor from Caenorhabditis elegans. Journal of Neurochemistry 82, 13521359.CrossRefGoogle ScholarPubMed
Rex, E., Harmych, S., Puckett, T. & Komuniecki, R. (2004) Regulation of carbohydrate metabolism in Ascaris suum body wall muscle: a role for the FMRFamide AF2, not serotonin. Molecular and Biochemical Parasitology 133, 311313.CrossRefGoogle Scholar
Rogers, C.M., Franks, C.J., Walker, R.J., Burke, J.F. & Holden-Dye, L. (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. Journal of Neurobiology 49, 235244.CrossRefGoogle ScholarPubMed
Rosso, M.N., Dubrana, M.P., Cimbolini, N., Jaubert, S. & Abad, P. (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Molecular Plant Microbe Interactions 18, 615620.CrossRefGoogle ScholarPubMed
Sanyal, S., Wintle, R.F., Kindt, K.S., Nuttley, W.M., Arvan, R., Fitzmaurice, P., Bigras, E., Merz, D.C., Hebert, T.E., van der Kooy, D., Schafer, W.R., Culotti, J.G. & Van Tol, H.H. (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO Journal 23, 473482.CrossRefGoogle ScholarPubMed
Sardanelli, S. & Kenworthy, W.J. (1997) Soil moisture control and direct seeding for bioassay of Heterodera glycines on soybean. Journal of Nematology 29, 625634.Google ScholarPubMed
Sawin, E.R., Ranganathan, R. & Horvitz, H.R. (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619631.CrossRefGoogle ScholarPubMed
Sugiura, M., Fuke, S., Suo, S., Sasagawa, N., Van Tol, H.H. & Ishiura, S. (2005) Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. Journal of Neurochemistry 94, 11461157.CrossRefGoogle Scholar
Suo, S., Sasagawa, N. & Ishiura, S. (2003) Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. Journal of Neurochemistry 86, 869878.CrossRefGoogle ScholarPubMed
Suo, S., Ishiura, S. & Van Tol, H.M. (2004) Dopamine receptors in C. elegans. European Journal of Pharmacology 500, 159166.CrossRefGoogle ScholarPubMed
Trim, J.E., Holden-Dye, L., Willson, J., Lockyer, M. & Walker, R.J. (2001) Characterization of 5HT receptors in the parasitic nematode, Ascaris suum. Parasitology 122, 207217.Google ScholarPubMed
Tsalik, E.L., Niacaris, T., Wenick, A.S., Pau, K., Avery, L. & Hobert, O. (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Developmental Biology 263, 81102.CrossRefGoogle ScholarPubMed
Urwin, P.E., Lilley, C.J. & Atkinson, H.J. (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant Microbe Interactions 15, 747752.CrossRefGoogle ScholarPubMed
Williams, J.A., Shahkolahi, A.M., Abbassi, M. & Donahue, M.J. (1992) Identification of a novel 5-HTN (Nematoda) receptor from Ascaris suum muscle. Comparative Biochemistry and Physiology 101, 469474.Google ScholarPubMed