Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T23:42:28.542Z Has data issue: false hasContentIssue false

Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis

Published online by Cambridge University Press:  03 August 2009

B.L. Webster*
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
D. Rollinson
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
J.R. Stothard
Affiliation:
Wolfson Wellcome Biomedical Laboratories, Department of Zoology, The Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
T. Huyse
Affiliation:
Department of Parasitology, Institute of Tropical Medicine, Nationalestraat 155, B-2000Antwerpen, Belgium Laboratory of Animal Diversity and Systematics, Catholic University of Leuven, Ch. de Beriotstraat 32, B-3000Leuven, Belgium
*

Abstract

Schistosoma haematobium and S. bovis are widespread schistosome species causing human and cattle schistosomiasis, respectively, in Africa. The sympatric occurrence of these two species and their ability to infect the same Bulinus intermediate snail hosts necessitates precise methods of identification of the larval stages. A rapid diagnostic ‘mulitplex’ one-step polymerase chain reaction protocol (RD-PCR) was developed using cytochrome oxidase subunit 1 (COX1) mitochondrial DNA (mtDNA) to discriminate between S. haematobium and S. bovis. A single forward primer and two species-specific reverse primers were used to produce a polymerase chain reaction (PCR) fragment of 306 bp and 543 bp for S. bovis and S. haematobium, respectively. Serial dilutions were carried out on various lifecycle stages and species combinations to test the sensitivity and specificity of the primers. This RD-PCR proved highly sensitive, detecting a single larval stage and as little as 0.78 ng of genomic DNA (gDNA) from an adult schistosome, providing a cost-effective, rapid and robust molecular tool for high-throughput screening of S. haematobium and S. bovis populations. In areas where human and cattle schistosomiasis overlap and are transmitted in close proximity, this mitochondrial assay will be a valuable identification tool for epidemiological studies, especially when used in conjunction with other nuclear diagnostic markers.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, I., King, C.H., Sturrock, R.F., Kariuki, C., Muchiri, E. & Hamburger, J. (2007) Differentiation of Schistosoma haematobium from related schistosomes by PCR amplifying an inter-repeat sequence. American Journal of Tropical Medicine and Hygiene 76, 950955.CrossRefGoogle ScholarPubMed
Barber, K.E., Mkoji, G.M. & Loker, E.S. (2000) PCR-RFLP analysis of the ITS2 region to identify Schistosoma haematobium and S. bovis from Kenya. American Journal of Tropical Medicine and Hygiene 62, 434440.CrossRefGoogle ScholarPubMed
Bayssade-Dufour, C. (1982) Chétotaxies cercariennes comparés de dix espèces de schistosomes. Annales de Parasitologie 57, 467485.Google ScholarPubMed
Brémond, P., Sellin, B., Sellin, E., Naméoua, B., Labbo, R., Théron, A. & Combes, C. (1993) Evidence for the introgression of the human parasite Schistosoma haematobium by genes from S. bovis in Niger. Comptes Rendus de L'Académie des Sciences Serie 3 316, 667670.Google Scholar
De Bont, J. & Vercruysse, J. (1998) Schistosomiasis in cattle. Advances in Parasitology 41, 285364.CrossRefGoogle ScholarPubMed
Gower, C.M., Shrivastava, J., Lamberton, P.H.L., Rollinson, D., Webster, B.L., Emery, A., Kabatereine, N.B. & Webster, J.P. (2006) Development and application of an ethically and epidemiologically advantageous assay for the multi-locus microsatellite analysis of Schistosoma mansoni. Parasitology 134, 523536.CrossRefGoogle ScholarPubMed
Hamburger, J., Abbasi, I., Ramzy, R.M., Jourdane, J. & Ruppel, A. (2001) Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. American Journal of Tropical Medicine and Hygiene 65, 907911.CrossRefGoogle ScholarPubMed
Hamburger, J., Hoffman, O., Kariuki, C., Muchiri, E., Ouma, J.H., Koech, D.K., Sturrock, R.F. & King, C.H. (2004) Large-scale, polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: a new tool for studying the dynamics of snail infection. American Journal of Tropical Medicine and Hygiene 71, 765773.CrossRefGoogle Scholar
Maddison, D.R. & Maddison, W.P. (2005) MacClade 4: analysis of phylogeny and character evolution. Version 4.08Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Rollinson, D. & Southgate, V.R. (1987) The genus Schistosoma: A taxonomic Appraisal. pp. 141in Rollinson, D. & Simpson, A.J.G. (Eds) The biology of schistosomes: from genes to latrines. London, Academic Press.Google Scholar
Rollinson, D., Southgate, V.R., Vercruysse, J. & Moore, P.J. (1990) Observations on natural and experimental interactions between Schistosoma bovis and S. curassoni from West Africa. Acta Tropica 47, 101114.CrossRefGoogle ScholarPubMed
Rollinson, D., Webster, J.P., Webster, B.L., Nyakaana, S. & Stothard, J.R. (2009) Genetic diversity of schistosomes and snails: significance for control. Parasitology in press.CrossRefGoogle Scholar
Shrivastava, J., Gower, C.M., Balolong, E.J., Wang, T.P., Qian, B.Z. & Webster, J.P. (2005) Population genetics of multi-host parasites – the case for molecular epidemiological studies of Schistosoma japonicum using naturally sampled larval stages. Parasitology 131, 617626.CrossRefGoogle ScholarPubMed
Southgate, V.R., Tchuem Tchuenté, L-A., Sène, M., De Clercq, D., Théron, A., Jourdane, J., Webster, B.L., Rollinson, D., Gryseels, B. & Vercruysse, J. (2001) Studies on the biology of schistosomiasis with emphasis on the Senegal River Basin. Memórias do Instituto Oswaldo Cruz 96, 7578.CrossRefGoogle ScholarPubMed
Van der Werf, M.J., De Vlas, S.J., Brooker, S., Looman, C.W., Nagelkerke, N.J., Habbema, J.D. & Engels, D. (2003) Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Tropica 86, 125139.CrossRefGoogle ScholarPubMed
Webster, B.L., Southgate, V.R. & Littlewood, D.T.L. (2006) A revision of the interrelationships of Schistosoma including the recently described Schistosoma guineensis. International Journal of Parasitology 36, 947955.CrossRefGoogle ScholarPubMed
Webster, B.L., Tchuem Tchuenté, L.A. & Southgate, V.R. (2007) A single-strand conformation polymorphism (SSCP) approach for investigating genetic interactions of Schistosoma haematobium and Schistosoma guineensis in Loum, Cameroon. Parasitology Research 100, 739745.CrossRefGoogle ScholarPubMed
WHO. (2002) Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. World Health Organisation Technical Report 912, 23.Google Scholar
Wright, C.A. & Ross, G.C. (1980) Hybrids between Schistosoma haematobium and S. mattheei and their identification by isoelectric focusing of enzymes. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 326332.CrossRefGoogle ScholarPubMed