Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T03:43:54.593Z Has data issue: false hasContentIssue false

Purification and characterization of a glycoprotein from the surface of Ascaridia galli*

Published online by Cambridge University Press:  05 June 2009

Khalid Masood
Affiliation:
Central Drug Research Institute, Lucknow 226001, India
K. P. Sircar
Affiliation:
Division of Biochemistry and HPLC UnitLucknow 226001, India
V. M. L. Srivastava
Affiliation:
Central Drug Research Institute, Lucknow 226001, India

Abstract

Employing papain as the enzyme and agarose bound Ricinus communis agglutinin as the affinity gel, a glycoprotein has been isolated and purified from the surface of Ascaridia galli. The glycoprotein shows an apparent molecular weight of 68 kilo daltons and contains fucose, galactose, rhamnose and glucosamine as sugar moieties. Only 2% of its entire molecule has been found to possess α-helical configuration.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, M. K. & Cain, G. D. (1980) Iodination of surface components of the spheroidal and ameboid spermatozoa of Ascaris suum. Biological Reproduction, 22, 10071014.CrossRefGoogle ScholarPubMed
Ansari, A. A., Khan, M. A. & Ghatak, S. (1976) Ascaridia galli: Trypsin and chymotrypsin inhibitors. Experimental Parasitology, 39, 7483.CrossRefGoogle Scholar
Baschong, W., Tanner, M., Betschart, B., Rudin, W. & Weiss, N. (1982) Dipetalonema viteae: Extraction and immunogenicity of cuticular antigens from female worms. Experimental Parasitology, 53, 262269.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology, 71, 393417.CrossRefGoogle ScholarPubMed
Davis, B. J. (1964) Disc electrophoresis II: Method and application to human serum proteins. Annals New York Academy of Sciences, 121, 404427.CrossRefGoogle ScholarPubMed
Devaney, E. (1985) Lectin binding characteristics of Brugia pahangi microfilariae. Tropical Medicine & Parasitology, 36, 2528.Google ScholarPubMed
Dissous, C., Dissous, C. & Capron, A. (1981) Isolation and characterization of surface antigens from Schistosoma mansoni schistosomula. Molecular & Biochemical Parasitology, 3, 215225.CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K. A., Hamillon, J. K., Robers, P. A. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Biochemistry, 28, 350356.Google Scholar
Feinberg, J. G. & Morgan, W. T. J. (1953) The isolation of a specific substance and a glycogen-like polysaccharide from Trichomonas foetus. British Journal of Experimental Pathology, 34, 104118.Google Scholar
Furman, A. & Ash, L. R. (1983) Analysis of Brugia pahangi microfilariae surface carbohydrates: Comparison of the binding of a panel of FITC-lectins to mature in vivo-derived and immature utero-derived microfilariae. Acta Tropica, 40, 4551.Google Scholar
Glick, M. C. (1974) Isolation and characterization of surface membrane glycoproteins from mammalian cells. In: Methods in membrane biology. Vol. 2 (editor Korn, E. D.). Plenum Press, New York, pp. 157204.CrossRefGoogle Scholar
Goldberg, S. S., Cordeiro, M. N., Silva-Perereira, A. A. & Mares-Guia, M. L. (1983) Release of lipopolysaccharides from cell surface of Trypanosoma cruzi by EDTA. International Journal for Parasitology, 13, 1218.CrossRefGoogle ScholarPubMed
Goncalves, J. M. & Yamaha, T. (1969) Immunochemical polysaccharide from Trypanosoma cruzi. Journal of Tropical Medicine & Hygiene, 72, 3944.Google ScholarPubMed
Greenfield, B. & Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 41084116.CrossRefGoogle ScholarPubMed
Hammerberg, B. (1985) Sheathed and unsheathed microfilarial surfaces, interactions with host serum proteins in diethylcarbamazine. Tropical Medicine and Parasitology, 36, (Supplement), 59.Google ScholarPubMed
Hess, H. H. & Lewin, L. (1965) Microassay of biochemical structural components in nervous tissues II: Methods for cerebrosides, proteolipid proteins and residue proteins. Journal of Neurochemistry, 12, 205211.CrossRefGoogle ScholarPubMed
Himmelhoch, S. & Zuckerman, B. M. (1983) Caenorhabditis elegans: Characters of negatively charged groups on the cuticle and intestine. Experimental Parasitology, 55, 299305.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry, 193, 265275.CrossRefGoogle ScholarPubMed
Lumsden, R. D. (1975) Surface ultrastructure and cytochemistry of parasitic helminths. Experimental Parasitology, 37, 267339.CrossRefGoogle ScholarPubMed
Masood, K., Srivastava, V. M. L., Singh, D. P., Chatterjee, R. K. & Sen, A. B. (1983) Uptake of adenosine 3′, 5′-cyclic monophosphate and isoproterenol by filarial parasites. Journal of Helminthology, 57, 335338.CrossRefGoogle ScholarPubMed
Murrell, K. D., Taylor, D. W., Vannier, W. E. & Dean, D. A. (1978) Schistosoma mansoni: Analysis of surface membrane carbohydrates using lectins. Experimental Parasitology, 46, 247255.CrossRefGoogle ScholarPubMed
Olenick, J. G., Travis, R. W. & Garson, S. (1981) Trypanosoma rhodesiense: Chemical and immunological characterization of variant-specific surface coat glycoprotein. Molecular and Biochemical Parasitology, 3, 227238.CrossRefGoogle Scholar
Pappas, P. W. & Read, C. P. (1975) Membrane transport in helminth parasites. Experimental Parasitology, 37, 469530.CrossRefGoogle ScholarPubMed
Philipp, M., Parkhouse, R. M. E. & Ogilvie, B. M. (1980) Changing proteins on the surface of a parasitic nematode. Nature, 287, 538540.CrossRefGoogle ScholarPubMed
Philipp, M. & Rumjaneck, F. D. (1984) Antigenic and dynamic properties of helminth surface structures. Molecular and Biochemical Parasitology, 10, 245268.CrossRefGoogle ScholarPubMed
Philipp, M., Worms, M. J., Mclaren, D. J., Ogilvie, B. M., Parkhouse, R. M. E. & Taylor, P. M. (1984) Surface proteins of a filarial nematode: A major soluble antigen and a host component on the cuticle of Litomosoides carinii. Parasite Immunology, 6, 6382.CrossRefGoogle Scholar
Rosen, N. L., Ondera, M., Hotez, P. J., Bogucki, M. S., Elce, B., Patton, C., Konigsberg, W. H., Cross, G. A. M. & Richards, F. F. (1981) Trypanosoma congolense: Surface glycoproteins of two early blood stream variants. Experimental Parasitology, 52, 210218.CrossRefGoogle Scholar
Simpson, A. J. G. & Smithers, S. R. (1980) Characterisation of the exposed carbohydrates on the surface membrane of adult Schistosoma mansoni by analysis of lectin binding. Parasitology, 81, 115.CrossRefGoogle ScholarPubMed
Snary, D., Smith, M. A. & Clegg, J. A. (1980) Surface proteins of Schistosoma mansoni and their expression during morphogenesis. European Journal of Immunology, 10, 573575.CrossRefGoogle ScholarPubMed
Tanner, M. & Weiss, N. (1978) Studies on Dipetalonema viteae (Filarioidea): II. Antibody dependent adhesion of peritoneal exudate cells to microfilariae in vitro. Acta Tropica, 35, 151160.Google Scholar
Tracey, J. W. & Mahmoud, A. A. F. (1982) Isolation of Schistosoma japonicum egg glycoprotein antigens which sensitize mice to lung granuloma formation and elicit an immediate hypersensitivity response. American Journal of Tropical Medicine & Hygiene, 31, 12101212.Google Scholar
Turner, D. P. & Gregson, N. A. (1982) The cell surface of Plasmodium gallinaceum sporozoites:microelectrophoretic and lectin-binding characterization. Parasitology, 84, 227238.CrossRefGoogle Scholar
Weber, K. & Osborn, M. (1969) The reliability of molecular weight determination by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244, 44064412.CrossRefGoogle Scholar