Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T06:55:08.499Z Has data issue: false hasContentIssue false

Polymorphic DNA markers in the genome of parasitic nematodes

Published online by Cambridge University Press:  05 June 2009

M.H. Roos*
Affiliation:
Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), PO Box 65, 8200 AB Lelystad, The Netherlands
R. Hoekstra
Affiliation:
Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), PO Box 65, 8200 AB Lelystad, The Netherlands
M. Otsen
Affiliation:
Department of Infectious Diseases, University of Utrecht, PO Box 80165, 3508 TD Utrecht, The Netherlands
J.A. Lenstra
Affiliation:
Department of Infectious Diseases, University of Utrecht, PO Box 80165, 3508 TD Utrecht, The Netherlands
*
*Fax: +31 320 238050, E-mail: [email protected]

Abstract

Polymorphic molecular markers are being identified to characterize the genomes of parasitic nematodes. The aim is to construct a map with markers evenly spread over the six chromosomes. With such a map, regions can be identified that are under selection pressure when attempts are being made to eradicate worms, be it by drugs, vaccines or genetic resistance in the sheep. Several types of markers have been developed, microsatellites, transposon-associated markers, amplified fragment length polymorphism (AFLP) and expressed sequence tag (EST) markers. Linkage groups can be constructed using several generic crosses between inbred and drug resistant strains. EST markers will be especially important for comparative mapping with the genome of Caenorhabditis elegans, and therefore localization of the linkage group on a chromosome. It will then be possible to identify functional genes close to markers that have changed allele frequencies under selection pressure and identify the mechanisms of resistance to parasite control.

Type
Symposium Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. (1996) Comparative genome organization of vertebrates, the first international workshop on comparative genome organization. Mammalian Genome 7, 717734.CrossRefGoogle Scholar
Blaxter, M.L., De Ley, P., Gerey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfletteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. & Thomas, W.K. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392, 7175.Google Scholar
Broeks, A., Gerrard, B., Allikmets, R., Dean, M. & Plasterk, R.H.A. (1996) Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO Journal 15, 61326143.Google Scholar
Callaghan, M.J. & Beh, K.J. (1994) A middle-repetitive DNA sequence element in the sheep parasitic nematode, Trichostrongylus colubriformis. Parasitology 109, 345350.Google Scholar
Coles, G.C., Borgsteede, F.H.M. & Geerts, S. (1994) Anthelmintic-resistant nematodes in the EU. Parasitology Today 10, 288290.Google Scholar
Coulson, A. (1996) The Caenorhabditis genome project. C. elegans Genome Consortium. Biochemical Society Transactions, 24, 289291.CrossRefGoogle ScholarPubMed
Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van de Ploeg, L.H.T., Schaeffer, J.M. & Arena, J.P. (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707711.CrossRefGoogle ScholarPubMed
Dobson, R.J., Le Jambre, L. & Gill, J.H. (1996) Management of anthelmintic resistance and selection with persistent drugs. International Journal for Parasitology 26, 9931000.Google Scholar
Fisher, M.C. & Viney, M.E. (1996) Microsatellites of the parasitic nematode Strongyloides ratti. Molecular and Biochemical Parasitology 80, 221224.CrossRefGoogle ScholarPubMed
Gill, H.S., Watson, D.L. & Brandon, M.R. (1992) In vivo inhibition by a monoclonal antibody to CD4+ T cells of humoral and cellular immunity in sheep. Immunology 77, 3842.Google Scholar
Grant, W.N. (1994) Genetic variation in parasitic nematodes and its implications. International Journal for Parasitology 24, 821830.CrossRefGoogle ScholarPubMed
Goyal, P.K. & Wakelin, D. (1993) Influence of variation in host strain and parasite isolate on inflammatory and antibody responses to Trichinella spiralis. Parasitology 106, 371378.CrossRefGoogle ScholarPubMed
Hoekstra, R., Criado-Fornelio, A., Fakkeldij, J., Bergman, J. & Roos, M.H. (1997a) Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. Molecular and Biochemical Parasitology 89, 97107.CrossRefGoogle ScholarPubMed
Hoekstra, R., Visser, A., Wiley, L.J., Weiss, A.S., Sangster, N.C. & Roos, M.H. (1997b) Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Molecular and Biochemical Parasitology 84, 179187.CrossRefGoogle ScholarPubMed
Hoekstra, R., Borgsteede, F.H.M., Boersema, J.H. & Roos, M.H. (1997c) Selection for high levamisole resistance in Haemonchus contortus monitored with an egg-hatch assay. International Journal for Parasitology 27, 13951400.Google Scholar
Holden-Dye, L. & Walker, R.J. (1990) Avermecrin and avermecrin-derivatives are antagonists at the 4-amino-butyric acid (GABA) receptor on the somatic muscle cells of Ascaris: is this the site of anthelmintic action? Parasitology 101, 265271.Google Scholar
Jackson, F. (1993) Anthelmintic resistance–the state of the play. British Veterinary Journal 149, 123138.Google Scholar
Korswagen, H.C., Durbin, R.M., Smits, M.T. & Plasterk, R.H.A. (1996) Transposon Tcl-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proceedings of the National Academy of Sciences, USA 93, 1468014685.Google Scholar
Kwa, M.S.G., Kooyman, F.N.J., Boersema, J.H. & Roos, M.H. (1993) Effect of selection for benzimidazole resistance in Haemonchus contortus on beta-tubulin isotype-1 and isotype-2 genes. Biochemical and Biophysical Research Communications 191, 413419.CrossRefGoogle ScholarPubMed
Kwa, M.S.G., Veenstra, J.G. & Roos, M.H. (1994) Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in fl-tubulin isotype-1. Molecular and Biochemical Parasitology 63, 299303.CrossRefGoogle ScholarPubMed
Kwa, M.S.G., Veenstra, J.G., Van Dijk, M. & Roos, M.H. (1995) fl-Tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. Journal of Molecular Biology 246, 500510.Google Scholar
Kwa, M.S.G., Okoli, M.N., Schulz-Key, H., Okongkwo, P.O. & Roos, M.H. (1998) Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus. International Journal for Parasitology 28, 693706.Google Scholar
Le Jambre, L.F. (1993) Molecular variation in trichostrongylid nematodes from sheep and cattle. Acta Tropica, 53, 331343.CrossRefGoogle ScholarPubMed
Le Jambre, L.F., Gill, J.H., Lenane, I.J. & Lacey, E. (1995) Characterization of an avermectin resistant strain of Australian Haemonchus contortus. International Journal for Parasitology 25, 691698.CrossRefGoogle ScholarPubMed
Lewis, J.A., Wu, C.-H., Levine, J.H. & Berg, H. (1980) Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967989.Google Scholar
Martin, R.J. & Pennington, A.J. (1989) A patch-clamp study of the effects of dihydroavermectin on Ascaris muscle. British Journal of Pharmacology 98, 747756.CrossRefGoogle ScholarPubMed
O'Brien, S.J., Womack, J.E., Lyons, L.A., Moore, K.J., Jenkins, N.A. & Copeland, N.G. (1993) Anchored reference loci for comparative genome mapping in mammals. Nature Genetics 3, 103112.CrossRefGoogle ScholarPubMed
Pouliot, J.F., Lheureux, F., Liu, Z., Prichard, R.K. & Georges, E. (1997) Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochemical Pharmacology 53, 1725.CrossRefGoogle ScholarPubMed
Pratt, D., Cox, G.N., Milhausen, M. J. & Boisvenue, R.J. (1990) A developmentally regulated cysteine protease gene family in Haemonchus contortus. Molecular and Biochemical Parasitology 43, 181192.CrossRefGoogle ScholarPubMed
Roos, M.H., Kwa, M.S.G. & Grant, W.H. (1995) New genetic and practical implications for anthelmintic resistance in parasitic nematodes. Parasitology Today 11, 148150.Google Scholar
Sangster, N.C., Riley, F.L. & Collins, G.H. (1988) Investigation of the mechanism of levamisole resistance in trichostrongylid nematodes of sheep. International Journal for Parasitology 18, 813818.Google Scholar
Shamansky, L.M., Pratt, D., Boisvenue, R.J. & Cox, G.N. (1989) Cuticle collagen genes of Haemonchus contortus and Caenorhabditis elegans are highly conserved. Molecular and Biochemical Parasitology 37, 7386.Google Scholar
Smith, N.C. (1992) Concepts and strategies for anti-parasite immunoprofilaxis and therapy. International Journal for Parasitology 22, 10471082.Google Scholar
Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research 17, 41234130.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijmans, M., Van de Lee, T., Homes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 21, 44074414.Google Scholar
Waller, P.J. (1986) Anthelmintic resistance in Australia. Parasitology Today 2, S16–S18.Google Scholar
Wiley, L.J., Ferrara, D.R., Sangster, N.C. & Weiss, A.S. (1997) The nicotinic acetylcholine alpha-subunit gene tar-1 is located on the X chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. Molecular and Biochemical Parasitology 90, 415422.CrossRefGoogle ScholarPubMed
Zufall, F., Franke, C. & Hatt, H. (1989) The insecticide avermectin Bla activates a chloride channel in crayfish muscle membrane. Journal of Experimental Biology 142, 191205.CrossRefGoogle Scholar