Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T12:42:28.441Z Has data issue: false hasContentIssue false

Patterns of variation in parasite component communities and infracommunities of a littoral fish species from the northern coast of Chile

Published online by Cambridge University Press:  14 December 2012

Vania Henríquez*
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
M. Teresa González
Affiliation:
Instituto de Investigaciones Oceanológicas, Facultad de Recursos del Mar, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
*
*Fax: 056-55- 637804 E-mail: [email protected]

Abstract

The structure and similarity of the parasite communities of fish can be evaluated at the component community (CC) and infracommunity (IC) levels. Both hierarchical levels have been used to assess parasite variations in fish at large (biogeographic) scales. However, studies evaluating the consistency between these two hierarchical levels at smaller geographical scales are scarce. In this study, the parasite assemblages of 124 Paralabrax humeralis collected by local fishermen by spear fishing at four sites (El Fierro, EF; P. Angamos, PA; Santa María, ISM; San Jorge, BSJ) in northern Chile were compared to assess the variability (or similarity) of their CCs and ICs at a limited geographical scale using multivariate analysis. At the IC level, discriminant analyses showed that P. humeralis parasite communities varied significantly among sites; 70% of ectoparasite ICs were correctly assigned to each site, but only 55% of helminth parasite ICs were correctly classified. At the CC level, the composition of parasite communities as assessed by correspondence analyses varied significantly between sites. Tagia sp., Neobenedenia sp. and Philometra sp. were associated with BSJ, ISM and PA, respectively; Corynosoma sp. and most digeneans were associated with both ISM and EF. Analysis of similarities (ANOSIM) showed significant variations in the degree of similarity between P. humeralis CCs from different sites, but not between ICs. Variations between CCs from different sites reflect fish population processes (e.g., population age, reproductive segregation) and the particular conditions of their respective habitats, whereas ICs reflect individual host movements. This study demonstrated that, when examined at a limited geographical scale, IC is better than CC at capturing the local pool of parasite assemblages when host populations are spatially segregated. Therefore, in this study, it is demonstrated that at a small geographic scale, CC variations are not reflected by IC, when host population is spatially segregated.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, A. & Ojeda, P. (2001) Structure and trophic organization of subtidal fish assemblage on the northern Chilean coast: the effect of habitat complexity. Marine Ecology Progress Series 217, 8191.Google Scholar
Balboa, L. & George-Nascimento, M. (1998) Variaciones ontogenéticas y entre años de las infracomunidades de parásitos metazoos de dos especies de peces marinos de Chile. Revista Chilena de Historia Natural 71, 2737.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Chávez, R.A., Valdivia, I.M. & Oliva, M.E. (2007) Local variability in metazoan parasites of the pelagic fish species, Engraulis ringens: implications for fish stock assessment using parasites as biological tags. Journal of Helminthology 81, 113116.Google Scholar
Chirichigno, N. & Vélez, M. (1998) Clave para identificar los peces marinos del Perú. Publicación Especial 2da Ed., 500 pp. Callao, Instituto del Mar del Perú.Google Scholar
Cisternas, F. & Sielfeld, W. (2008) Habitat overlap of Paralabrax humeralis (Cuvier & Valenciennes, 1828), Hemilutjanus macrophthalmos (Tschudi, 1845), and Acanthistius pictus (Tschudi, 1845) (Pisces; Serranidae) in the rocky subtidal south of Iquique, Chile. Latin American Journal of Aquatic Research 36, 153158.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, K.R. & Gorley, R.N. (2006) PRIMER v6: User manual/tutorial.. Plymouth, UK, PRIMER-E.Google Scholar
Clarke, K.R. & Warwick, R.M. (2001) Change in marine communities: An approach to statistical analysis and interpretation. 2nd edn.172 pp. Plymouth, UK, PRIMER-E.Google Scholar
Díaz, F. & George-Nascimento, M. (2001) Estabilidad temporal de las infracomunidades de parásitos en la borrachilla Scartichthys viridis (Valenciennes, 1836) (Pisces: Blenniidae) en la costa central de Chile. Revista Chilena de Historia Natural 75, 641649.Google Scholar
Escribano, R. & Hidalgo, P. (2001) Circulación inducida por el viento en Bahía de Antofagasta, norte de Chile (23° S). Revista de Biología Marina y Oceanografía 36, 4360.Google Scholar
González, M.T. & Oliva, M.E. (2006) Similarity and structure of the ectoparasite communities of rockfish species from the southern Chilean coast in a temporal scale. Parasitology 133, 335343.Google Scholar
González, M.T. & Poulin, R. (2005a) A spatial and temporal predictability of the parasite community structure of a benthic marine fish along its distributional range. International Journal for Parasitology 35, 13691377.Google Scholar
González, M.T. & Poulin, R. (2005b) Nested patterns in parasite component communities of a marine fish along its latitudinal range on the Pacific coast of South America. Parasitology 131, 569577.Google Scholar
González, M.T., Barrientos, C. & Moreno, C.A. (2006) Biogeographical patterns in endoparasite communities of a marine fish (Sebastes capensis Gmelin) with extended range in the Southern Hemisphere. Journal of Biogeography 33, 10861095.Google Scholar
González, M.T., Vásquez, R. & Acuña, E. (2008) Biogeographic patterns of metazoan parasites of the Bigeye Flounder Hippoglossina macrops, in the southeastern Pacific coast. Journal of Parasitology 94, 429435.CrossRefGoogle ScholarPubMed
Henríquez, V.P., González, M.T., Licandeo, R. & Carvajal, J. (2011) Metazoan parasite communities of rock cod Eleginops maclovinus along southern Chilean coast and their use as biological tags at a local spatial scale. Journal of Fish Biology 79, 18511865.Google Scholar
Holmes, J.C. (1990) Helminth communities in marine fishes. pp. 101130in Esch, G.W., Bush, A.O. & Aho, J.M. (Eds) Parasite communities: patterns and processes. New York, Chapman & Hall.CrossRefGoogle Scholar
Hutson, K.S., Ernst, I., Mooney, A.J. & Whittington, I.D. (2007) Metazoan parasite assemblages of wild Seriola lalandi (Carangidae) from eastern and southern Australia. Parasitology International 56, 95105.Google Scholar
Iannacone, J. & Alvariño, L. (2009) Population dynamic of parasite diversity of the Peruvian rock seabass, Paralabrax humeralis (Teleostei: Serranidae) on Chorrillos, Lima, Peru. Neotropical Helminthology 3, 7388.Google Scholar
Krasnov, B.R., Shenbrot, G.I., Mouillot, D., Khokhlova, I.S. & Poulin, R. (2005) Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographic distance or faunal similarity? Journal of Biogeography 32, 633644.CrossRefGoogle Scholar
Luque, J.L. & Poulin, R. (2007) Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 134, 865878.CrossRefGoogle ScholarPubMed
Luque, J.L., Iannacone, J. & Farfán, C. (1991) Parásitos de peces óseos marinos en el Perú: Lista de especies conocidas. Boletín de Lima 74, 1728.Google Scholar
Magurran, A.E. (1988) Ecological diversity and its measurement. Princeton, Princeton University Press.Google Scholar
Medina, M., Araya, M. & Vega, C. (2004) Alimentación y relaciones tróficas de peces costeros de la zona norte de chile. Investigaciones Marinas 32, 3347.CrossRefGoogle Scholar
Morand, S., Rohde, K. & Hayward, C. (2002) Order in ectoparasite communities of marine fish is explained by epidemiological processes. Parasitology 124 (Suppl.), S57S63.Google Scholar
Muñoz, G. & Olmos, V. (2007) Revisión bibliográfica de especies ectoparásitas y hospederas de sistemas acuáticos de Chile. Revista de Biología Marina y Oceanografía 42, 80198.Google Scholar
Muñoz, G. & Olmos, V. (2008) Revisión bibliográfica de especies endoparásitas y hospederas de sistemas acuáticos de Chile. Revista de Biología. Marina y Oceanografía 43, 173245.Google Scholar
Oliva, M.E., Bórquez, A.S. & Olivares, A.N. (1992) Sexual status of Paralabrax humeralis (Serranidae) and infection by Philometra sp. (Nematoda: Dracunculoidea). Journal of Fish Biology 40, 979980.Google Scholar
Ortiz, M. (2010) Dynamical and spatial models of Kelp forest of Macrocystis integrifolia and Lessonia trabeculata (SE Pacific) for assessment harvest scenarios: short-term responses. Aquatic Conservation: Marine and Freshwater Ecosystems 20, 494506.Google Scholar
Pérez del Olmo, A., Fernández, M., Raga, J.A., Kostadinova, A. & Morand, S. (2009) Not everything is everywhere: the distance decay of similarity in a marine host–parasite system. Journal of Biogeography 36, 200209.Google Scholar
Poulin, R. (1995) Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.Google Scholar
Poulin, R. (1998) Evolutionary ecology of parasites. From individuals to communities. London, Chapman & Hall.Google Scholar
Poulin, R. (2004) Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology 5, 423434.Google Scholar
Poulin, R. (2007a) The structure of parasite communities in fish hosts: ecology meets geography and climate. Parassitologia 49, 169172.Google Scholar
Poulin, R. (2007b) Evolutionary ecology of parasites. 2nd edn.Princeton, Princeton University Press.Google Scholar
Quinn, G.P. & Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Rodrigo, R.J. & Pequeño, G. (2001) Revisión taxonómica de especies de las subfamilias Epinephelinae y Serraninae (Pises: Serranidae) de Chile. Revista de Biología Tropical 49, 157171.Google Scholar
Rutllant, J., Fuenzalida, H., Torres, R. & Figueroa, D. (1998) Interacción océano-atmósfera-tierra en la región de Antofagasta (Chile 23° S). Experimento Diclima. Revista Chilena de Historia Natural 71, 405427.Google Scholar
Sarmiento, L., Tantaleán, M. & Huiza, A. (1999) Nemátodos parásitos del hombre y de los animales en el Perú. Revista Peruana de Parasitología 14, 965.Google Scholar
Tantaleán, M., Sánchez, L., Gómez, L. & Huiza, A. (2005) Acantocéfalos del Perú. Revista Peruana de Parasitología 12, 8392.Google Scholar
Timi, J.T. (2007) Parasites as biological tags for stock discrimination in marine fish from South American Atlantic water. Journal of Helminthology 81, 107111.Google Scholar
Timi, J.T. & Poulin, R. (2003) Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it? International Journal of Parasitology 33, 13531362.Google Scholar
Timi, J.T., Lafranchi, A.L. & Luque, J.L. (2010) Similarity in parasite communities of the teleost fish Pinguipes brasilianus in the southwestern Atlantic: Infracommunities as a tool to detect geographical patterns. International Journal of Parasitology 40, 243254.Google Scholar
Vásquez, J.A., Piaget, N., Tala, F. & Alonso, J.M. (2010) Evaluación de la biomasa de praderas naturales y prospección de potenciales lugares de repoblamiento de algas pardas en la costa de la XV, I y II regiones. Proyecto FIP N° 2008 – 38.Google Scholar
Villegas, M.J., Laudien, J., Sielfeld, W. & Arntz, W.E. (2008) Macrocystis intergrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community off northern Chile. Helgoland Marine Research 62, 33-43.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edn.New York, Prentice-Hall.Google Scholar