Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T20:00:54.377Z Has data issue: false hasContentIssue false

Partial resistance to homologous challenge infections of the digenean Echinostoma caproni in ICR mice

Published online by Cambridge University Press:  23 July 2015

C. Muñoz-Antoli*
Affiliation:
Department de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100Burjassot - Valencia, Spain
A. Cortés
Affiliation:
Department de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100Burjassot - Valencia, Spain
C. Martín-Grau
Affiliation:
Department de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100Burjassot - Valencia, Spain
B. Fried
Affiliation:
Department of Biology, Lafayette College, Easton, Pennsylvania18042, USA
J.G. Esteban
Affiliation:
Department de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100Burjassot - Valencia, Spain
R. Toledo
Affiliation:
Department de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100Burjassot - Valencia, Spain
*
*Fax: 34-963544769 E-mail: [email protected]

Abstract

In the present paper, we analyse the effect of a primary infection of ICR mice with Echinostoma caproni (Trematoda: Echinostomatidae) on the generation of resistance against homologous challenge infections. In ICR mice, E. caproni induces chronic infections concomitantly with strong responses characterized by the development of T-helper 1 (Th1)-type local immune responses with elevated levels of local interferon-gamma (IFN-γ) and inflammatory and antibody responses. Here, the effect of the response generated against a primary infection with E. caproni in the generation of resistance against subsequent homologous infections was analysed. For this purpose, ICR mice were challenged with metacercariae of E. caproni and the results obtained showed that primary infection induces partial resistance against subsequent homologous infections in ICR mice. This resistance was expressed as a reduced rate of infection, worm recovery and worm size, indicating that primary infection induces changes in the host, making a hostile environment for the development of the parasite.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christensen, N.Ø., Knudsen, J. & Andreassen, J. (1986) Echinostoma revolutum: resistance to secondary and superimposed infections in mice. Experimental Parasitology 61, 311318.Google Scholar
Christensen, N.Ø., Odaibo, A.B. & Simonsen, P.E. (1988) Echinostoma population regulation in experimental rodent definitive hosts. Parasitology Research 75, 8387.Google Scholar
Fried, B. & Huffman, J.E. (1996) The biology of the intestinal trematode Echinostoma caproni . Advances in Parasitology 38, 311368.CrossRefGoogle ScholarPubMed
Fried, B. & Peoples, R.C. (2007) Effects of various physical and chemical factors on excystation of the encysted metacercariae of Echinostoma caproni . Journal of Parasitology 93, 13881391.Google Scholar
Fujino, T.B. & Fried, B. (1993) Expulsion of Echinostoma trivolvis (Cort, 1914) Kanev, 1985 and retention of E. caproni Richard, 1964 (Trematoda, Echinostomatidae) in C3H mice: pathological, ultrastructural, and cytochemical effects on the host intestine. Parasitology Research 79, 286292.CrossRefGoogle ScholarPubMed
Fujino, T., Yamada, M., Ichikawa, H., Fried, B., Arizono, N. & Tada, I. (1996) Rapid expulsion of the intestinal trematodes Echinostoma trivolvis and E. caproni from C3H/HeN mice after infection with Nippostrongylus brasiliensis . Parasitology Research 82, 577579.CrossRefGoogle Scholar
Harris, N.L. (2011) Advances in helminth immunology: optimism for future vaccine design? Trends in Parasitology 27, 288293.CrossRefGoogle ScholarPubMed
Hosier, D.W., Fried, B. & Szewczak, J.P. (1988) Homologous and heterologous resistance of Echinostoma revolutum and E. liei in ICR mice. Journal of Parasitology 74, 8992.Google Scholar
Keiser, J., Brun, R., Fried, B. & Utzinger, J. (2006) Trematocidal activity of praziquantel and artemisinin derivatives: in vitro and in vivo investigations with adult Echinostoma caproni . Antimicrobial Agents and Chemotherapy 50, 803805.Google Scholar
Liu, Q., Kreider, T., Bowdridge, S., Liu, Z., Song, Y., Gaydo, A.G., Urban, J.F. Jr & Gause, W.C. (2010) B cells have distinct roles in host protection against different nematode parasites. Journal of Immunology 184, 52135223.Google Scholar
McCoy, K.D., Stoel, M., Stettler, R., Merky, P., Fink, K., Senn, B.M., Schaer, C., Massacand, J., Odermatt, B., Oettgen, H.C., Zinkernagel, R.M., Bos, N.A., Hengartner, H., Macpherson, A.J. & Harris, N.L. (2008) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host & Microbe 4, 362373.Google Scholar
Morimoto, M., Morimoto, M., Whitmire, J., Xiao, S., Anthony, R.M., Mirakami, H., Star, R.A., Urban, J.F. Jr & Gause, W.C. (2004) Peripheral CD4 T cells rapidly accumulate at the host:parasite interface during an inflammatory Th2 memory response. Journal of Immunology 172, 24242430.Google Scholar
Muñoz-Antoli, C., Sotillo, J., Monteagudo, C., Fried, B., Marcilla, A. & Toledo, R. (2007) Development and pathology of Echinostoma caproni in experimentally infected mice. Journal of Parasitology 93, 854859.Google Scholar
Odaibo, A.B., Christensen, N.Ø. & Ukoli, F.M.A. (1989) Further studies on the population regulation in Echinostoma caproni infections in NMRI mice. Proceedings of the Helminthological Society of Washington 56, 192198.Google Scholar
Sirag, S.B., Christensen, N.Ø., Frandsen, F., Monrad, J. & Nansen, P. (1980) Homologous and heterologous resistance in Echinostoma revolutum infections in mice. Parasitology 80, 479486.Google Scholar
Sotillo, J., Muñoz-Antoli, C., Marcilla, A., Fried, B., Esteban, J.G. & Toledo, R. (2007) Echinostoma caproni: kinetics of IgM, IgA and IgG subclasses in the serum and intestine of experimentally infected rats and mice. Experimental Parasitology 116, 390398.Google Scholar
Sotillo, J., Trelis, M., Cortes, A., Fried, B., Marcilla, A., Esteban, J.G. & Toledo, R. (2011) Th17 responses in Echinostoma caproni infections in hosts of high and low compatibility. Experimental Parasitology 129, 307311.Google Scholar
Toledo, R. & Fried, B. (2005) Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts. Trends in Parasitology 21, 251254.Google Scholar
Toledo, R., Espert, A., Carpena, I., Muñoz-Antoli, C., Fried, B. & Esteban, J.G. (2004) The comparative development of Echinostoma caproni (Trematoda: Echinostomatidae) adults in experimentally infected hamsters and rats. Parasitology Research 93, 439444.Google Scholar
Toledo, R., Esteban, J.G. & Fried, B. (2009) Recent advances in the biology of echinostomes. Advances in Parasitology 69, 147204.Google Scholar
Trelis, M., Sotillo, J., Monteagudo, C., Fried, B., Marcilla, A., Esteban, J.G. & Toledo, R. (2011) Echinostoma caproni (Trematoda): differential in vivo cytokine responses in high and low compatible hosts. Experimental Parasitology 127, 387397.Google Scholar
Trelis, M., Cortes, A., Fried, B., Marcilla, A., Esteban, J.G. & Toledo, R. (2013) Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. International Journal of Parasitology 43, 453463.Google Scholar
Wojciechowski, W., Harris, D.P., Sprague, F., Mousseau, B., Makris, M., Kusser, K., Honjo, T., Mohrs, K., Mohrs, M., Randall, T. & Lund, F.E. (2009) Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus . Immunity 30, 421433.Google Scholar