Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-04T05:43:01.641Z Has data issue: false hasContentIssue false

Optimizing protease production from an isolate of the nematophagous fungus Duddingtonia flagrans using response surface methodology and its larvicidal activity on horse cyathostomins

Published online by Cambridge University Press:  04 August 2010

F.R. Braga
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
J.V. Araújo*
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
F.E.F. Soares
Affiliation:
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
J.M. Araujo
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
H.L.A. Genier
Affiliation:
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
A.R. Silva
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
R.O. Carvalho
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
J.H. Queiroz
Affiliation:
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
S.R. Ferreira
Affiliation:
Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG36570-000, Brazil
*

Abstract

Protease production from Duddingtonia flagrans (isolate AC001) was optimized and the larvicidal activity of the enzymatic extract was evaluated on infective horse cyathostomin larvae (L3). Duddingtonia flagrans was grown in liquid medium with eight different variables: glucose, casein, bibasic potassium phosphate (K2HPO4), magnesium sulphate (MgSO4), zinc sulphate (ZnSO4), ferrous sulphate (FeSO4), copper sulphate (CuSO4) and temperature. The Plackett–Burman analysis showed a significant influence of MgSO4, CuSO4 and casein (P < 0.05) on protease production by D. flagrans in liquid medium. Central composite design indicated that the highest proteolytic activity was 39.56 U/ml as a function of the concentrations of casein (18.409 g/l), MgSO4 (0.10 g/l) and CuSO4 (0.50 mg/l). A significant difference (P < 0.01) was found for the larval number between the treated and control groups at the end of the experiment. A reduction of 95.46% in the number of free-living larvae was found in the treated group compared with the control. The results of this study suggest that protease production by D. flagrans (AC001) in liquid medium was optimized by MgSO4, CuSO4 and casein, showing that the optimized enzymatic extract exerted larvicidal activity on cyathostomins and therefore may contribute to large-scale industrial production.

Type
Regular research papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidi, F., Limam, F. & Nejib, M.M. (2008) Production of alkaline proteases by Botrytis cinerea using economic raw materials: assay as biodetergent. Process Biochemistry 43, 12021208.CrossRefGoogle Scholar
Ambati, P. & Ayyanna, C. (2001) Optimization of medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method. World Journal of Microbiology and Biotechnology 17, 331335.CrossRefGoogle Scholar
Araújo, J.V. (2001) Inibição de captura de larvas infectantes de Cooperia punctata por fungos do gênero Arthrobotrys, utilizando carboidratos e lectinas. Revista Brasileira de Parasitologia Veterinária 10, 711.Google Scholar
Araújo, J.V., Mota, M.A. & Campos, A.K. (2004) Controle biológico de helmintos parasitos de animais por fungos nematófagos. Revista Brasileira de Parasitologia Veterinária 13, 165170.Google Scholar
Ayres, M., Ayres, J.R.M., Ayres, D.L. & Santos, A.S. (2003) Aplicações estatísticas nas áreas de ciências biológicas. 290 pp. Belém, Sociedade civil mamirauá; Brasília, CNPq.Google Scholar
Bevilaqua, C.M.L., Rodrigues, M.L. & Concordet, D. (1993) Identification of infective larvae of some common nematode strongylids of horses. Revue Médicine Véterinaire 144, 989995.Google Scholar
Braga, F.R., Araújo, J.V., Silva, A.R., Araujo, J.M., Carvalho, R.O., Tavela, A.O., Campos, A.K. & Carvalho, G.R. (2009a) Biological control of horse cyathostomin (Nematoda: Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical southeastern Brazil. Veterinary Parasitology 163, 335340.CrossRefGoogle ScholarPubMed
Braga, F.R., Carvalho, R.O., Araujo, J.M., Silva, A.R., Araújo, J.V., Lima, W.S., Tavela, A.O. & Rodrigo, S.F. (2009b) Predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Angiostrongylus vasorum first stage larvae. Journal of Helminthology 83, 303308.CrossRefGoogle ScholarPubMed
Braga, F.R., Araújo, J.V., Araujo, J.M., Silva, A.R., Carvalho, R.O. & Campos, A.K. (2009c) Avaliação in vitro do fungo predador de nematoides Duddingtonia flagrans sobre larvas infectantes de ciatostomíneos de equinos (nematoda: cyathostominae). Revista Brasileira de Parasitologia Veterinária 18, 8385.Google Scholar
Chakravarti, R. & Sahia, V. (2002) Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochemistry 38, 481486.CrossRefGoogle Scholar
Djekrif-Dakhmouche, S., Gheribi-Aoulmi, Z., Meraihi, Z. & Bennamoun, L. (2006) Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. Journal of Food Engineering 73, 190197.CrossRefGoogle Scholar
Godfrey, T. & West, S. (1996) Introduction to industrial enzymology. Industrial enzymology. 2nd edn. pp. 17. New York, Stocholm Press.Google Scholar
Gordon, H.M. & Whitlock, H.V. (1939) A new technique for counting nematode eggs in sheep faeces. Journal of the Council for Scientific Industrial Research 12, 5052.Google Scholar
Gupta, R., Beg, Q.K. & Lorenz, P. (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59, 1532.Google ScholarPubMed
Hajji, M., Rebai, A., Gharsallah, N. & Nasri, M. (2008) Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Applied Microbiology and Biotechnology 79, 915923.CrossRefGoogle ScholarPubMed
Jaffee, B.A. (2004) Wood, nematodes, and the nematode-trapping fungus Arthrobotrys oligospora. Soil Biological Biochemistry 36, 11711178.CrossRefGoogle Scholar
Joo, H.S. & Chang, C.S. (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochemistry 40, 12631270.CrossRefGoogle Scholar
Kammoun, R., Naili, B. & Bejar, S. (2008) Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresource Technology 99, 56025609.CrossRefGoogle Scholar
Meyer, W.J. & Wiebe, M.G. (2003) Enzyme production by the nematode-trapping fungus, Duddingtonia flagrans. Biotechnology Letters 25, 791795.CrossRefGoogle ScholarPubMed
Mukhtar, T. & Pervaz, I. (2003) In vitro evaluation of ovicidal and larvicidal effects of culture filtrate of Verticillium chlamydosporium against Meloidogyne javanica. International Journal of Agriculture Biology 5, 576579.Google Scholar
Nguyen, V.L., Justin, L., Bastow, B., Jaffee, A. & Strong, D.R. (2007) Response of nematode-trapping fungi to organic substrates in a coastal grassland soil. Mycological Research 111, 856862.CrossRefGoogle Scholar
Park, S.W., Choi, K., Kim, I.C., Lee, H.H.B., Hooper, N.M. & Park, H.S. (2001) Endogenous lycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochemical Journal 353, 339344.CrossRefGoogle ScholarPubMed
Plackett, R.L. & Burman, J.P. (1946) The design of optimum multifactorial experiments. Biometrika 33, 305325.CrossRefGoogle Scholar
Rao, M.B., Tanksale, A.M., Ghatge, M.S. & Deshpande, V.V. (1998) Molecular and biotechnological aspects of microbial proteases. Microbiological Molecular Biological Review 62, 597635.CrossRefGoogle ScholarPubMed
Sharma, P., Goel, R. & Capalash, N. (2007) Bacterial laccases. World Journal Microbiology and Biotechnology 23, 823832.CrossRefGoogle Scholar
Tunlid, A. & Jansson, S. (1991) Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus. Applied Environmental Microbiology 57, 28682872.CrossRefGoogle ScholarPubMed
Weisberg, S. (1985) Applied linear regression. 217 pp. New York, Wiley.Google Scholar