Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:36:11.187Z Has data issue: false hasContentIssue false

The nervous systems of Tylodelphys metacercariae (Digenea: Diplostomidae) from the catfish Clarias gariepinus (Clariidae) in freshwater habitats of Tanzania

Published online by Cambridge University Press:  01 December 2015

F.D. Chibwana*
Affiliation:
Department of Zoology and Wildlife Conservation, University of Dar es Salaam, PO Box 35064, Dar es Salaam, Tanzania
G. Nkwengulila
Affiliation:
Department of Zoology and Wildlife Conservation, University of Dar es Salaam, PO Box 35064, Dar es Salaam, Tanzania

Abstract

The nervous systems of three Tylodelphys metacercariae (T. mashonense, Tylodelphys spp. 1 and 2) co-occurring in the cranial cavity of the catfish, Clarias gariepinus, were examined by the activity of acetylthiocholine iodide (AcThI), with the aim of better understanding the arrangement of sensillae on the body surface and the nerve trunks and commissures, for taxonomic purposes. Enzyme cytochemistry demonstrated a comparable orthogonal arrangement in the three metacercariae: the central nervous system (CNS) consisting of a pair of cerebral ganglia, from which anterior and posterior neuronal pathways arise and inter-link by cross-connectives and commissures. However, the number of transverse nerves was significantly different in the three diplostomid metacercariae: Tylodelphys sp. 1 (30), Tylodelphys sp. 2 (21) and T. mashonense (15). The observed difference in the nervous system of the three metacercariae clearly separates them into three species. These findings suggest that consistent differences in the transverse nerves of digenean metacercariae could enable the differentiation of metacercariae to the species level in the absence of molecular techniques. This, however, might require further testing on a larger number of species of digenean metacercariae.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arafa, S.Z., El-Naggar, M.M., El-Abbassy, S.A., Stewart, M.T. & Halton, D.W. (2007) Neuromusculature of Gyrodactylus rysavyi, a monogenean gill and skin parasite of the catfish Clarias gariepinus . Parasitology International 56, 297307.CrossRefGoogle ScholarPubMed
Beverley-Burton, M. (1963) New Strigeid Diplostomum (T) mashonense n. sp (Trematoda: Diplostomatidae) from the grey heron, Ardea cinerea L., in Southern Rhodesia with an experimental demonstration of part of the life cycle. Revue Zoologie et de Botanique Afrinaines LXVIII , 291306.Google Scholar
Chibwana, F.D. & Nkwengulila, G. (2010) Variation in the morphometrics of diplostomid metacercariae (Digenea: Trematoda) infecting the catfish, Clarias Gariepinus in Tanzania. Journal of Helminthology 84, 6170.CrossRefGoogle ScholarPubMed
Chibwana, F.D., BlascoCosta, I., Georgieva, S., Hosea, K.M., Nkwengulila, G., Scholz, T. & Kostadinova, A. (2013) A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infection, Genetics and Evolution 17, 6270.CrossRefGoogle ScholarPubMed
De Jong-Brink, M. (1995) How schistosomes profit from the stress responses they elicit in their hosts. Advances in Parasitology 35, 177256.CrossRefGoogle ScholarPubMed
Duvaux-Miret, O., Stefano, G.B., Smith, E.M., Dissous, C. & Capron, A. (1992) Immunosuppression in the definitive and intermediate hosts of the human parasite Schistosoma mansoni by release of immunoactive neuropeptides. Proceedings of the National Academy of Sciences, USA 89, 778781.CrossRefGoogle ScholarPubMed
Field, J.S. & Irwin, S.W. (1995) Life-cycle description and comparison of Diplostomum spathaceum (Rudolphi, 1819) and D. pseudobaeri (Razmaskin & Andrejak, 1978) from rainbow trout (Oncorhynchus mykiss Walbaum) maintained in identical hosts. Parasitology Research 81, 505517.CrossRefGoogle Scholar
Grabda-Kazubska, B. & Moczon, T. (1981) Nervous system and chaetotaxy in the cercaria of Haplometra cylindracea (Zeder, 1800) (Digenea, Plagiorchiidae). Zeitschrift für Parasitenkunde 65, 5361.CrossRefGoogle Scholar
Gustafsson, M.K.S. & Wikgren, M.C. (1981) Release of neurosecretory material by protrusions of bounding membranes extending through the axolemma in Diphyllobothrium dendriticum (Cestoda). Cell Tissue Research 220, 473479.CrossRefGoogle ScholarPubMed
Gustafsson, M.K.S., Halton, D.W., Kreshchenko, N.D., Movsessian, S.O., Raikova, O.I., Reuter, M. & Terenina, N.B. (2002) Neuropeptides in flatworms. Peptides 23, 20532061.CrossRefGoogle ScholarPubMed
Halton, D.W., Shaw, C., Maule, A.G., Johnston, C.F. & Fairweather, I. (1992) Peptidergic messengers: a new perspective of the nervous system of parasitic platyhelminths. Journal of Parasitology 78, 179193.CrossRefGoogle ScholarPubMed
McKeown, C.A. & Irwin, S.W.B. (1995) The life cycle stages of three Diplostomum species maintained in the laboratory. International Journal for Parasitology 25, 897906.CrossRefGoogle ScholarPubMed
Musiba, M.J. & Nkwengulila, G. (2006) Occurrence of metacercariae of Diplostomum and Tylodelphys species (Diplostomidae) in Clarias species (Clariidae) from Lake Victoria. Tanzania Journal of Science 32, 8998.Google Scholar
Mwita, C. & Nkwengulila, G. (2010) Phylogenetic relationships of the metazoan parasites of the clariid fishes of Lake Victoria inferred from partial 18S rDNA sequences. Tanzania Journal of Science 36, 4758.Google Scholar
Niewiadomska, K. & Moczon, T. (1982) The nervous system of Diplostomum pseudospathaceum Niewiadomska (Digenea, Diplostomatidae). I. Nervous system and chaetotaxy in cercaria. Parasitology Research 68, 295304.Google Scholar
Niewiadomska, K. & Moczon, T. (1984) The nervous system of Diplostomum pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomatidae). II. Structure and development of the nervous system in metacercaria. Parasitology Research 70, 537548.Google Scholar
Niewiadomska, K. & Moczon, T. (1987) The nervous system of Diplostomum pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomatidae). III. Structure of the nervous system in the adult stage. Parasitology Research 73, 4649.CrossRefGoogle ScholarPubMed
Niewiadomska, K. & Moczon, T. (1990) The nervous system of Diplostomum pseudospathaceum Niewiadomska, 1984 (Trematoda, Diplostomidae). IV. Nervous system and distribution of sensilla in the daughter sporocyst. Parasitology Research 76, 635637.CrossRefGoogle ScholarPubMed
Nkwengulila, G. (1995) Epidemiology and taxonomy of Diplostomum species (Trematoda: Diplostomatidae) infecting fish of Llyn Tegid, North Wales and Ruvu Basin Tanzania. PhD thesis, University of Liverpool, UK.Google Scholar
Pax, R.A. & Bennett, J.L. (1992) Neurobiology of parasitic flatworms: how much ‘neuro’ in the biology? Journal of Parasitology 78, 194205.CrossRefGoogle ScholarPubMed
Solis-Soto, J.M. & De Jong-Brink, M. (1995) An immunocytochemistry study comparing the occurrence of neuroactive substances in the nervous system of cercariae and metacercariae of the eye fluke Diplostomum spathaceum. Parasitology Research 81, 553559.CrossRefGoogle ScholarPubMed