Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:15:24.413Z Has data issue: false hasContentIssue false

Neotropical sisterhood: new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) infecting Rhamdia guatemalensis and Rhamdia laticauda (Siluriformes: Heptapteridae) in Mexico

Published online by Cambridge University Press:  14 February 2023

A. García-Vásquez*
Affiliation:
Instituto de Ecología, A.C., Red de Biología Evolutiva, km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, México
C.D. Pinacho-Pinacho
Affiliation:
CONACyT Research Fellow at Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, México
I. Guzmán-Valdivieso
Affiliation:
Instituto de Ecología, A.C., Red de Biología Evolutiva, km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, México
M. Calixto-Rojas
Affiliation:
Instituto de Ecología, A.C., Red de Biología Evolutiva, km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, México
M. Rubio-Godoy
Affiliation:
Instituto de Ecología, A.C., Red de Biología Evolutiva, km 2.5 Ant. Carretera a Coatepec, Xalapa, Veracruz 91070, México
*
Author for correspondence: Adriana García Vásquez, E-mail: [email protected]

Abstract

We describe two new species of monogenean parasites of the genus Gyrodactylus von Nordmann, 1832 infecting Neotropical catfishes (Siluriformes) in southern Mexico: Gyrodactylus chulini n. sp. from ‘chulín’, Rhamdia laticauda collected in Oaxaca; and Gyrodactylus juili n. sp. from ‘juil’, Rhamdia guatemalensis from Veracruz. Morphologically, both new taxa are similar to Gyrodactylus spp. infecting catfishes (Siluriformes) in South America. Sequences of the internal transcribed spacers (ITS1-5.8S–ITS2 rDNA), the D2+D3 domains of the large ribosomal subunit (28S rDNA) and the cytochrome oxidase II (COII) gene were obtained from multiple parasite specimens and analysed using Bayesian inference. Phylogenetic hypotheses using ITS rDNA and COII genes, recovered two new Gyrodactylus species from Rhamdia spp.: G. chulini n. sp.; and Gyrodactylus juili n. sp., which are sister species to Gyrodactylus lilianae, a parasite of Rhamdia quelen in Brazil, and show strong affinity to other gyrodactytlids infecting Neotropical catfishes. This suggests that these new taxa, the first gyrodactylids described from Rhamdia spp. in Mexico, co-migrated to Tropical Middle America with their Neotropical catfish hosts, after the emergence of the Isthmus of Panama.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Both authors are principal authors.

References

Arroyave, J and De La Cruz-Fernández, DA (2021) Genetic and morphological evidence cast doubt on the validity of Mexican troglobitic species of the Neotropical catfish genus Rhamdia (Siluriformes: Heptapteridae). Revista Mexicana de Biodiversidad 92(1), e923718.CrossRefGoogle Scholar
Boeger, WA, Tanaka, LK and Pavanelli, GC (2001) Neotropical Monogenoidea. 39: a new species of Kritskyia (Dactylogyridae, Ancyrocephalinae) from the ureters and urinary bladder of Serrasalmus marginatus and S. spilopleura (Characiformes, Serrasalmidae) from Southern Brazil with an emended generic diagnosis. Zoosystema 23(1), 510.Google Scholar
Boeger, WA, Ferreira, RC, Vianna, RT and Patella, L (2014) Neotropical Monogenoidea 59. Polyonchoineans from Characidium spp. (Characiformes: Crenuchidae) from southern Brazil. Folia Parasitologica 61(2), 120.CrossRefGoogle ScholarPubMed
Boeger, WA, Kritsky, DC, Patella, L and Bueno-Silva, M (2020) Phylogenetic status and historical origins of the oviparous and viviparous gyrodactylids (Monogenoidea, Gyrodactylidea). Zoologica Scripta 50(1), 112124.CrossRefGoogle Scholar
Bowles, J and McManus, DP (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular Biochemistry and Parasitology 57(2), 231239.CrossRefGoogle ScholarPubMed
Bowles, J, Blair, D and McManus, DP (1995) A molecular phylogeny of the human schistosomes. Molecular Phylogenetics and Evolution 4(2), 103109.CrossRefGoogle ScholarPubMed
Bueno-Silva, M and Boeger, W (2009) Neotropical Monogenoidea. 53. Gyrodactylus corydori sp. n. and redescription of Gyrodactylus anisopharynx (Gyrodactylidea: Gyrodactylidae), parasites of Corydoras spp. (Siluroiformes: Callichthyidae) from southern Brazil. Folia Parasitolica 56(1), 1320.CrossRefGoogle Scholar
Bueno-Silva, M and Boeger, W (2014) Neotropical Monogenoidea. 58. Three new species of Gyrodactylus (Gyrodactylidae) from Scleromystax spp. (Callichthyidae) and proposal of COII gene as an additional fragment for barcoding gyrodactylids. Folia Parasitologica 61(3), 213222.CrossRefGoogle ScholarPubMed
Bueno-Silva, M, Boeger, WA and Pie, MR (2011) Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae). International Journal for Parasitology 41(6), 657667.CrossRefGoogle ScholarPubMed
Cable, J, van Oosterhout, C, Barson, N and Harris, PD (2005) Gyrodactylus pictae n. sp. (Monogenea: Gyrodactylidae) from the Trinidadian swamp guppy Poecilia picta Regan, with a discussion on species of Gyrodactylus von Nordmann, 1832 and their poeciliid hosts. Systematic Parasitology 60(3), 159164.CrossRefGoogle Scholar
Choudhury, A, García-Varela, M and Pérez-Ponce de León, G (2017) Parasites of freshwater fishes and the Great American Biotic Interchange: a bridge too far? Journal of Helminthology 91(2), 174196.CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(1), 772.CrossRefGoogle ScholarPubMed
García-Prieto, L, Dáttilo, W, Rubio-Godoy, M and Pérez-Ponce de León, G (2022) Fish–parasite interactions: a dataset of continental waters in Mexico involving fishes and their helminth fauna. Ecology 103(12), e3815.CrossRefGoogle ScholarPubMed
García-Vásquez, A, Razo-Mendivil, U and Rubio-Godoy, M (2015) Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from poeciliid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico. Parasitology Research 114(9), 33373355.CrossRefGoogle ScholarPubMed
Hernández, CL, Ortega-Lara, A, Sanchez-Garces, GC and Alford, MH (2015) Genetic and morphometric evidence for recognition of several recently synonymized species of trans-Andean Rhamdia (Pisces: Siluriformes: Heptapteridae). Copeia 103(3), 563579.CrossRefGoogle Scholar
Hortal, J, de Bello, F, Diniz-Filho, JAF, Lewinsohn, TM, Lobo, JM and Ladle, RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46(1), 23549.CrossRefGoogle Scholar
Jara, CA and Cone, DK (1989) Scleroductus yuncensi gen. et sp. n. (Monogenea) from Pimelodella yuncensis (Siluriformes: Pimelodidae) in Peru. Proccedings of the Helminthological Society of Washington 56(2), 125127.Google Scholar
Kohn, A (1990) Kritskyia moraveci n. g., n. sp. (Monogenea, Dactylogyridae) from the urinary bladder and ureters of Rhamdia quelen (Quoy and Gaimard, 1824) (Pisces Pimelodidae) in Brazil. Systematic Parasitology 17(1), 8185.CrossRefGoogle Scholar
Kohn, A, Cohen, SC and Salgado-Maldonado, G (2006) Checklist of Monogenea parasites of freshwater and marine fishes, amphibians and reptiles from Mexico, Central America and Caribbean. Zootaxa 1289, 1114.Google Scholar
Kritsky, DC, Boeger, WA, Mendoza-Franco, EF and Viann, RT (2013) Neotropical Monogenoidea. 57. Revision and phylogenetic position of Scleroductus Jara & Cone, 1989 (Gyrodactylidae), with descriptions of new species from the Guatemalan chulin Rhamdia guatemalensis (Günther) (Siluriformes: Heptapteridae) in Mexico and the barred sorubim Pseudoplatystoma fasciatum (Linnaeus) (Siluriformes: Pimelodidae) in Brazil. Systematic Parasitology 84(1), 115.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 18701874.CrossRefGoogle ScholarPubMed
Lumme, J and Ziętara, MS (2018) Horizontal transmission of the ectoparasite Gyrodactylus arcuatus (Monogenea: Gyrodactylidae) to the next generation of the three-spined stickleback Gasterosteus aculeatus. Folia Parasitologica 65(1), 18.CrossRefGoogle Scholar
Luque, JL and Poulin, R (2007) Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 134(6), 865878.CrossRefGoogle ScholarPubMed
Mandeng, FDM, Bilong, CFB, Pariselle, A, Vanhove, MP, Nyom, ARB and Agnèse, JF (2015) A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus. Parasites & Vectors 8(1), 582.CrossRefGoogle Scholar
Mendoza-Garfias, B, Garcia-Prieto, L and Pérez-Ponce de León, G (2017) Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39(4), 501598.CrossRefGoogle Scholar
Mendoza-Palmero, CA, Sereno-Uribe, AL and Salgado-Maldonado, G (2009) Two new species of Gyrodactylus von Nordmann, 1832 (Monogenea: Gyrodactylidae) parasitizing Girardinichthys multiradiatus (Cyprinodontiformes: Goodeidae), an endemic freshwater fish from central Mexico. Journal of Parasitology 95(2), 315318.CrossRefGoogle Scholar
Mendoza-Palmero, CA, Blasco-Costa, I and Scholz, T (2015) Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes). Parasites & Vectors 8(1), 111.CrossRefGoogle ScholarPubMed
Nelson, JS, Grande, TC and Wilson, MVH (2016) Fishes of the world. 5th edn. 752 pp. Hoboken, NJ, John Wiley & Sons.CrossRefGoogle Scholar
Perdices, A, Bermingham, E, Montilla, A and Doadrio, I (2002) Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution 25(1), 172189.CrossRefGoogle ScholarPubMed
Popazoglo, F and Boeger, W (2000) Neotropical Monogenoidea 37. Redescription of Gyrodactylus superbus (Szidat, 1973) comb. n. and description of two new species of Gyrodactylus (Gyrodactylidea: Gyrodactylidae) from Corydoras paleatus and C. ehrhardti (Teleostei: Siluriformes: Callichthyidae) of Southern Brazil. Folia Parasitologica 47(2), 105110.CrossRefGoogle Scholar
Rambaut, A and Drummond, AJ (2007) Tracer v1.4. Available at http://beast.bio.ed.ac.uk/Tracer (accessed August 2022).Google Scholar
Razzolini, E, Levay-Maurari, A, Baldisserotto, B and Boeger, W (2019) Gyrodactylus lilianae n. sp. (Pluonchoinea: Gyrodactylidae) from Rhamdia quelen (Quoy & Gaimard) (Siluriformes: Heptapteridae) from southern Brazil: a potential nuisance from aquaculture. Systematic Parasitology 96(4–5), 407415.CrossRefGoogle Scholar
Ribolli, J, Zaniboni-Filho, E, Soares-Scaranto, BM, Akio-Shibatta, O and Barros-Machado, C (2021) Cryptic diversity and diversification process in three cis-Andean Rhamdia species (Siluriformes: Heptapteridae) revealed by DNA barcoding. Genetics and Molecular Biology 44(3), 110.CrossRefGoogle ScholarPubMed
Ronquist, F, Teslenko, M, Van Der Mark, P, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539542.CrossRefGoogle ScholarPubMed
Rubio-Godoy, M, Paladini, G, Freeman, MA, García-Vásquez, A and Shinn, AP (2012) Morphological and molecular characterization of Gyrodactylus salmonis (Platyhelminthes, Monogenea) isolates collected from Mexico from rainbow trout (Oncorhynchus mykiss Walbaum). Veterinary Parasitology 186(3–4), 289300.CrossRefGoogle Scholar
Salgado-Maldonado, G (2006) Checklist of helminth parasites of freahwater fishes from Mexico. Zootaxa 1324(1), 1357.CrossRefGoogle Scholar
Salgado-Maldonado, G (2008) Helminth parasites of freshwater fish from Central America. Zootaxa 1915(1), 2933.CrossRefGoogle Scholar
Salgado-Maldonado, G, Aguilar-Aguilar, R, Cabañas-Carranza, G, Soto-Galera, E and Mendoza-Palmero, C (2005) Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico. Parasitology Research 96(2), 6989.CrossRefGoogle Scholar
Salgado-Maldonado, G, Caspeta-Mandujano, JM, Moravec, F, Soto-Galera, E, Rodiles-Hernández, R, Cabañas-Carranza, G and Montoya-Mendoza, J (2011) Helminth parasites of freshwater fish in Chiapas, Mexico. Parasitology Research 108(1), 3159.CrossRefGoogle ScholarPubMed
Santacruz, A, Barluenga, M and Pérez-Ponce de León, G (2022) Filling the knowledge gap of Middle American freshwater fish parasite biodiversity: metazoan parasite fauna of Nicaragua. Journal of Helminthology 96(1), e24, 1–10.CrossRefGoogle ScholarPubMed
Silfvergrip, A (1996) A systematic revision of the Neotropical catfish genus Rhamdia (Teleostei, Pimelodidae). MSc Thesis, Stockholm University, StockholmGoogle Scholar
Takemoto, RM, Lizama, MAP and Pavanelli, GC (2002) A new species of Kritskyia (Dactylogyridae, Ancyrocephalinae) parasite of urinary bladder of Prochilodus lineatus (Prochilodontidae, Characiformes) from the floodplain of the high Paraná River, Brazil. Memórias do Instituto Oswaldo Cruz 97(3), 313315.CrossRefGoogle Scholar
Thompson, JD, Higgins, DG and Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22), 46734680.CrossRefGoogle ScholarPubMed
Vanhove, MPM, Pariselle, A, Van Steenberge, M, et al. (2015) Hidden biodiversity in an ancient lake: phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Scientific Reports 5(1), 13669.CrossRefGoogle Scholar
Vidal-Martínez, VM, Aguirre-Macedo, ML, Scholz, T, González-Solís, D and Mendoza-Franco, EF (2001) Atlas of the helminth parasites of cichlid fish of Mexico. 165 pp. Praha, Czech Republic, Academia.Google Scholar
Viozzi, GP and Brugni, NL (2003) Acolpenteron australe sp n. (Dactylogyridae: Dactylogyrinae), a new species from the ureters of Percichthys trucha (Perciformes: Percichthyidae) in Patagonia (Argentina). Folia Parasitologica 50(2), 105108.CrossRefGoogle Scholar
Viozzi, GP and Gutiérrez, PA (2001) Philureter trigoniopsis, a new genus and species (Dactylogyridae, Ancyrocephalinae) from the ureters and urinary bladder of Galaxias maculatus (Osmeriformes: Galaxiidae) in Patagonia (Argentina). Journal of Parasitology 87(2), 392394.CrossRefGoogle ScholarPubMed
Wu, XY, Chilton, NB, Zhu, XQ, Xie, MQ and Li, AX (2005) Molecular and morphological evidence indicates that Pseudorhabdosynochus lantauensis (Monogenea: Diplectanidae) represents two species. Parasitology 130(6), 669677.CrossRefGoogle ScholarPubMed
Xavier, R, Faria, PJ, Paladini, G, Van Oosterhout, C, Johnson, M and Cable, J (2015) Evidence for cryptic speciation in directly transmitted gyrodactylid parasites of Trinidadian guppies. PLoS One 10(1), e0117096.CrossRefGoogle ScholarPubMed