Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T00:31:58.937Z Has data issue: false hasContentIssue false

Nematocide activity of 6,7-diarylpteridines in three experimental models

Published online by Cambridge University Press:  11 April 2024

C. Ochoa*
Affiliation:
Instituto de Química Médica (CSIC), Calle Juan de la Cierva 3, 28006, Madrid, Spain
M. Rodríguez
Affiliation:
Instituto de Química Médica (CSIC), Calle Juan de la Cierva 3, 28006, Madrid, Spain
L. Domínguez
Affiliation:
Facultad de Química, Universidad de la República, Montevideo, Uruguay
J. Saldaña
Affiliation:
Facultad de Química, Universidad de la República, Montevideo, Uruguay
R. Di Maio
Affiliation:
Facultad de Química, Universidad de la República, Montevideo, Uruguay
P. Alonso-Villalobos
Affiliation:
Departamento de Parasitología Facultad de Farmacia, Universidad Complutense, Madrid, Spain
M.M. Martínez Grueiro
Affiliation:
Departamento de Parasitología Facultad de Farmacia, Universidad Complutense, Madrid, Spain
*
*Fax: 91 564 47 53 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The in vitro nematocide activity of seventeen 6,7-diarylpteridines has been tested using three different experimental models, Caenorhabditis elegans, Nippostrongylus brasiliensis and Heligmosomoides polygyrus. The method of evaluation of inhibition in the secretion of acetylcholinesterase by H. polygyrus seems to be the most indicated to avoid false positives. The in vivo activities, against Trichinella spiralis, of the most in vitro active pteridines have been assayed. All pteridine derivatives bearing 6,7-di-p-bromophenyl substituents have shown in vitronematocide activites in the three experimental models used. Amongst all the pteridines tested in vivo, only 2,4-pteridinedithione derivatives exhibited moderate activity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

References

Alonso-Villalobos, P. & Martínez Grueiro, M.M. (1999) The in vitro secretion of acetylcholinesterase by adult stage of Heligmosomoides polygyrus: the effect of broad-spectrum anthelmintics. Journal of Veterinary Mededicine B in press.Google Scholar
Cook, G.C. (1990) Use of benzimidazole chemotherapy in human helminthiasis: indications and efficacy. Parasitology Today 6, 133136.CrossRefGoogle ScholarPubMed
Denham, D.A. & Martínez Fernández, A.R. (1970) Studies with methyridine and Trichinella spiralis: II. The use of the drug to study the rate of larval production in mice. Journal of Helminthology 44, 355363.CrossRefGoogle Scholar
Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholine esterase activity. Biochemical Pharmacology 7, 8895.CrossRefGoogle Scholar
Gordon, S., Costa, L., Incerti, M., Manta, E., Saldaña, J., Domínguez, L., Mariezcurrena, R. & Suescun, L. (1998) Synthesis and in vitro anthelmintic activity against Nippostrongylus brasiliensis of new 2-amino-4-hydroxy-d-valerolactam derivatives. Il Farmaco 52, 603608.Google Scholar
Herrero, A., Ochoa, C., Pérez, C., Rodríguez-Caabeiro, F., Jiménez, A. de, Armas, C., Criado, A. & Font, M. (1993) Anthelmintic activity of pyrazinothiadiazine dioxide derivatives. Arzneimittel-Forschung/Drug Research 43, 163166.Google ScholarPubMed
Martínez, A., Ochoa, C., Rodríguez, J., Rodríguez, M., Castro, A., González, M. & Martínez, M.M. (1997) Comparative molecular field analysis (CoMFA) on [6]+[6] fused pyrazines with nematocide properties. Quantitative Structure-Activity Relationships 16, 372376.CrossRefGoogle Scholar
Martínez Grueiro, M.M. & Martínez Fernández, A.R. (1988) Actividad de algunos antihelmínticos convencionales sobre Caenorhabditis elegans . Revista Ibérica de Parasitología 48, 221226.Google Scholar
Ochoa, C., Rodríguez, J., López García, M.L., Martínez, A.R. & Martínez, M.M. (1996) Anthelmintic activity of 6,7-diarylpteridines. Arzneimittel-Forschung/Drug Research 46, 643648.Google Scholar
Ochoa, C., Rodríguez, J., Rodríguez, M., Chana, A., Stud, M., Alonso-Villalobos, P. & Martínez, M.M. (1997) Application of neural networks to the study of structure-activity relationships of 6,7-diarylpteridines as nematocides. Medicinal Chemistry Research 7, 530545.Google Scholar
Roos, M.H. (1997) The role of drugs in the control of parasitic nematode infections: must we do without?. Parasitology 114, 137144.CrossRefGoogle Scholar
Simpkin, K.G. & Coles, G.C. (1981) The use of Caenorhabditis elegans for anthelmintic screening. Journal of Chemical Technology and Biotechnology 31, 6669.CrossRefGoogle Scholar
Waller, P.J., Echevarria, F., Eddi, C., Maciel, S., Nari, A. & Hansen, J.V. (1996) The prevalence of anthelmintic resistance in nematode parasites of sheep in Southern Latin America: general overview. Veterinary Parasitology 62, 181187.CrossRefGoogle ScholarPubMed