Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T12:41:19.136Z Has data issue: false hasContentIssue false

Morphological variability within Oesophagostomum bifurcum among different primate species from Ghana

Published online by Cambridge University Press:  12 April 2024

J.M. de Gruijter*
Affiliation:
Department of Parasitology, Leiden University Medical Centre, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
J. Blotkamp
Affiliation:
Department of Parasitology, Leiden University Medical Centre, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
R.B. Gasser
Affiliation:
Department of Veterinary Science, University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
S. Amponsah
Affiliation:
Wildlife Division (Forestry Commission), PO Box M239, Accra, Ghana
A.M. Polderman
Affiliation:
Department of Parasitology, Leiden University Medical Centre, University of Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands
*
*Corresponding author: Fax: +44 1223 494919, Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adult Oesophagostomum bifurcum (Nematoda: Strongylida) from human and non-human primates from Ghana were compared in order to investigate the extent of morphological variability within the species. Using analysis of variance and principal component analysis, significant differences in morphological characters (such as parasite length, width, length of the oesophagus and length of spicules) were demonstrated between O. bifurcum worms from humans, the Mona, Patas or Green monkey and/or Olive baboons. These findings suggest that O. bifurcum from different species of primate host represent distinct population variants, also supported by recent epidemiological and genetic studies of O. bifurcum from such hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

References

Blotkamp, J., Krepel, H.P., Kumar, V., Baeta, S., Van't Noordende, J.M. & Polderman, A.M. (1993) Observations on the morphology of adults and larval stages of Oesophagostomum sp. isolated from man in northern Togo and Ghana. Journal of Helminthology 67, 4961.CrossRefGoogle ScholarPubMed
Chabaud, A.G. & Larivière, M. (1958) Sur les oesophagostomes parasites de l'homme. Bulletin de la Société de Pathologie Exotique 51, 384393.Google Scholar
de Gruijter, J.M., Polderman, A.M., Zhu, X.Q. & Gasser, R.B. (2002) Screening for haplotypic variability within Oesophagostomum bifurcum (Nematoda) employing a single-strand conformation polymorphism approach. Molecular and Cellular Probes 16, 185190.CrossRefGoogle ScholarPubMed
de Gruijter, J.M., Ziem, J., Verweij, J.J., Polderman, A.M. & Gasser, R.B. (2004) Genetic substructuring within Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana based on random amplification of polymorphic DNA analysis. American Journal of Tropical Medicine and Hygiene 71, 227233.CrossRefGoogle ScholarPubMed
de Gruijter, J.M., Gasser, R.B., Polderman, A.M., Asigri, V. & Dijkshoorn, L. (2005) High resolution DNA fingerprinting by AFLP to study the genetic variation among Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana. Parasitology 130, 229237.CrossRefGoogle Scholar
Gasser, R.B., Woods, W.G., Blotkamp, C., Verweij, J., Storey, P.A. & Polderman, A.M. (1999) Screening for nucleotide variations in ribosomal DNA arrays of Oesophagostomum bifurcum by polymerase chain reaction-coupled single-strand conformation polymorphism. Electrophoresis 20, 14861491.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Goldsmid, J.M. (1991) The African hookworm problem: an overview. pp. 101137 in MacPherson, C.N.L. & Craig, P.S. (Eds) Parasitic helminths and zoonoses in Africa. London, Unwin Hyman.Google Scholar
Goldsmid, J.M. & Lyons, N.F. (1973) Studies of Ternidens deminutus Railliet & Henry, 1909 (Nematoda), I. External morphology. Journal of Helminthology 47, 119126.CrossRefGoogle ScholarPubMed
Krepel, H.P., Baeta, S. & Polderman, A.M. (1992) Human Oesophagostomum infection in northern Togo and Ghana: epidemiological aspects. Annals of Tropical and Medical Parasitology 86, 289300.CrossRefGoogle ScholarPubMed
Pit, D.S., Rijcken, F.E., Raspoort, E.C., Baeta, S.M. & Polderman, A.M. (1999) Geographic distribution and epidemiology of Oesophagostomum bifurcum and hookworm infections in humans in Togo. American Journal of Tropical Medicine and Hygiene 61, 951955.CrossRefGoogle ScholarPubMed
Polderman, A.M., Krepel, H.P., Baeta, S., Blotkamp, J. & Gigase, P. (1991) Oesophagostomiasis, a common infection of man in northern Togo and Ghana. American Journal of Tropical Medicine and Hygiene 44, 336344.CrossRefGoogle ScholarPubMed
Polderman, A.M., Anemana, S.D. & Asigri, V. (1999) Human oesophagostomiasis: a regional public health problem in Africa. Parasitology Today 15, 129130.CrossRefGoogle ScholarPubMed
Popova, T.I. (1958) Strongyloids of animals and man. Trichonematidae. pp. 303308 in Skrjabin, K.I. (Eds) Essentials of nematodology. Moscow, Academy of Sciences of the USSR, Helminthological Laboratory.Google Scholar
Stewart, T.B. & Gasbarre, L.C. (1989) The veterinary importance of nodular worms (Oesophagostomum spp.). Parasitology Today 5, 209213.CrossRefGoogle Scholar
Storey, P.A., Faile, G., Hewitt, E., Yelifari, L., Polderman, A.M. & Magnussen, P. (2000) Clinical epidemiology and classification of human oesophagostomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 177182.CrossRefGoogle ScholarPubMed
van Lieshout, L., de Gruijter, J.M., Adu-Nsiah, M., Haizel, M., Verweij, J.J., Brienen, E.A., Gasser, R.B. & Polderman, A.M. (2005) Oesophagostomum bifurcum in non-human primates is not a potential reservoir for human infection in Ghana. Tropical Medicine and International Health 10, 13151320.CrossRefGoogle Scholar
Verweij, J.J., Pit, D.S., van Lieshout, L., Baeta, S.M., Dery, G.D., Gasser, R.B. & Polderman, A.M. (2001) Determining the prevalence of Oesophagostomum bifurcum and Necator americanus infections using specific PCR amplification of DNA from faecal samples. Tropical Medicine and International Health 6, 726731.CrossRefGoogle ScholarPubMed
Yelifari, L., Bloch, P., Magnussen, P., van Lieshout, L., Dery, G., Anemana, S., Agongo, E. & Polderman, A.M. (2005) Distribution of human Oesophagostomum bifurcum, hookworm and Strongyloides stercoralis infections in northern Ghana. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 3238.CrossRefGoogle ScholarPubMed
Bradford, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry 27, 248254.CrossRefGoogle Scholar
Bundy, D.A.P., Grenfell, B.T. & Rajagopalan, P.K. (1991) Immunoepidemiology of lymphatic filariasis: the relationship between infection and disease. Parasitology Today 7, A71A75.CrossRefGoogle Scholar
Chanteau, S., Glaziou, P., Plichart, C., Luquiaud, P., Moulia-Pelat, J.P. N'Guyen, L. & Cartel, J.L. (1995) Wuchereria bancrofti filariasis in French Polynesia: age-specific patterns of microfilaraemia, circulating antigen, and specific IgG and IgG4 responses according to transmission level. I. Journal of Parasitology 25, 8185.Google Scholar
Day, K.P., Grenfell, B.T., Spark, R., Karuza, J.W. & Alpers, M.P. (1991) Age specific patterns of change in the dynamics of Wuchereria bancrofti infection in Papua New Guinea. American Journal Tropical Medicine and Hygiene 44, 1827.CrossRefGoogle ScholarPubMed
Haarbrink, M., Terhell, A.J., Abadi, K., Asri, M., Medeiros, F.D. & Yazdanbakhsh, M. (1999) Anti-filarial IgG4 in men and women living in Brugia malayi -endemic areas. Tropical Medicine and International Health 4, 9597.CrossRefGoogle ScholarPubMed
Karuza, W.J. & Davis, R.S. (1982) Soluble Brugia malayi microfilarial antigens protect mice against challenge by an antibody-dependent mechanism. Journal of Immunology 128, 17921796.Google Scholar
Kwan-Lim, G.E., Forsyth, K.P. & Maizels, R.M. (1990) Filarial specific IgG4 response correlates with active Wuchereria bancrofti infection. Journal of Immunology 145, 4298.CrossRefGoogle ScholarPubMed
Lammie, P.J., Reiss, M.D., Dimock, K.A., Streit, T.G., Roberts, J.M. & Eberhard, M.L. (1998) Longitudinal analysis of the development of filarial infection and antifilarial immunity in a cohort of Haitian children. American Journal of Tropical Medicine and Hygiene 59, 217221.CrossRefGoogle Scholar
Loymek, S., Wongkamchai, S. Kob-asa, T. Choochote, W., Monkong, N., Chitnabut, P., Onrochanakul, J., Suvutho, S. & Sermsart, B. (2004) Impact of filariasis control programme on intestinal helminthic infection, A pilot study in Narathiwart province, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 35, 6570.Google Scholar
McMahon, J.E. & Simonsen, P.E. (1996) Filariases. pp. 13211328 in Cook, G.C.(Ed.) Manson's tropical diseases. London: WB Saunders Company Ltd Press.Google Scholar
McCarthy, J.S., Guinea, A., Weil, G.J. & Ottesen, E.A. (1995) Clearance of circulating filarial antigen as a measure of the macrofilaricidal activity of diethylcarbamazine in Wuchereria bancrofti infection. Journal of Infectious Diseases 172, 521526.CrossRefGoogle ScholarPubMed
Ministry of Public Health, Thailand (1998) Annual report of the Department of Communicable Disease Control, Division of Filariasis, Ministry of Public Health of Thailand.Google Scholar
Muck, A.E., Pires, M.L. & Lammie, P.J. (2003) Influence of infection with non-filarial helminths on the specificity of serological assays for antifilarial immunoglobulin G4. Transactions of the Royal Society of Tropical Medicine and Hygiene 97, 8890.CrossRefGoogle ScholarPubMed
Rahmah, N., Anuar, A.K., Karim, R., Mehdi, R., Sinniah, B. & Omar, A.W. (1994) Potential use of IgG2-ELISA in the diagnosis of chronic elephantiasis and IgG4-ELISA in the follow-up of microfilaraemic patients infected with Brugia malayi. Biochemical and Biophysical Research Communications 30, 202227.CrossRefGoogle Scholar
Rahmah, N., Taniawati, S., Shenoy, R.K., Lim, B.H., Kumaraswami, V., Anuar, A.K., Hakim, S.L., Hayati, M.I., Chan, B.T., Suharni, M. & Ramachandran, C.P. (2001) Specificity and sensitivity of a rapid dipstick test (Brugia Rapid) in the detection of Brugia malayi infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 601604.CrossRefGoogle ScholarPubMed
Rahmah, N., Wahyuni, S., Mangali, A., Huat, L.B., Yazdannakhsh, M. & Sartono, E. (2004) Comparison of IgG4 assays using whole parasite extract and BmR1 recombinant antigen in determining antibody prevalence in brugian filariasis. Filarial Journal 3, 8.Google Scholar
Ravindran, B. (2003) Aping Jane Goodall: insights into human lymphatic filariasis. Trends in Parasitology 19, 105109.CrossRefGoogle Scholar
Simonsen, P.E., Meyrowitsch, D.W., Jaoko, W.G., Malecela, M.N., Mukoko, D., Pedersen, E.M., Ouma, J.H., Rwegoshora, R.T., Masese, N., Magnussen, P., Estamabale, B.A. & Michael, E. (2002) Bancroftian filariasis infection, disease, and specific antibody response patterns in a high and low endemicity in east Africa. American Journal of Medicine and Hygiene 66, 550559.Google Scholar
Triteeraprapab, S., Karnjanopas, K., Porksakorn, C., Sai-Ngam, A., Yentakam, S. & Loymek, S. (2001) Lymphatic filariasis caused by Brugia malayi in an endemic area of Narathiwat province, southern of Thailand. Journal of the Medical Association of Thailand 84, Suppl. 1, S182S188.Google Scholar
Washington, C.H., Radday, J., Streit, T.G., Boyd, H.A., Beach, M.J., Addiss, D.G., Lovince, R., Lovegrove, M.C., Lafontant, J.G., Lammie, P.J. & Hightower, A.W. (2004) Spatial clustering of filarial transmission before and after a mass drug administration in a setting of low infection prevalence. Filarial Journal 3, 114.Google Scholar
Weil, G.J., Ramzy, R.M. El Setouhy, M., Kandil, A.M., Ahmed, E.S. & Faris, R. (1999) A longitudinal study of Bancroftian filariasis in the Nile Delta of Egypt: baseline data and one-year follow-up. American Journal of Medicine and Hygiene 61, 5358.Google ScholarPubMed
Yazdanbakhsh, M., Paxton, W.A., Kruise, Y.M.C., Sartono, E., Kurniawan, A., Wuot, A., Selkirk, M.E., Partono, F. & Maizels, R.M. (1993) T cell responsiveness correlates differentially with antibody isotype levels in clinical and asymptomatic filariasis. Journal of Infectious Diseases 167, 925931.CrossRefGoogle ScholarPubMed
Zhang, S., Li, B. & Weil, G.J. (1999) Human antibody responses to Brugia malayi antigens in brugian filariasis. International Journal for Parasitology 29, 429436.CrossRefGoogle ScholarPubMed
Abu-Madi, M.A., Behnke, J.M., Lewis, J.W. & Gilbert, F.S. (2000) Seasonal and site specific variation in the component community structure of intestinal helminths in Apodemus sylvaticus from three contrasting habitats in south-east England. Journal of Helminthology 74, 715.CrossRefGoogle ScholarPubMed
Almeida, F.C., Maroja, L.S., Seuanez, H.N., Cerqueira, R. & Moreira, M.A.M. (2000) Identification of microsatellite loci in the water rat Nectomys squamipes (Rodentia, Sigmodontinae). Molecular Ecology 9, 21722173.Google ScholarPubMed
Amato, J.F.R. (1985) Platelmintos (Temnocefálidos, Tremattódeos, Cestóides, Cestodários e Acantocéfalos). pp. 111 in Manual de Técnicas para a Preparação de Coleções Zoolólogicas. Sociedade Brasileira de Zoologia, São Paulo.Google Scholar
Behnke, J.M., Gilbert, F.S., Abu-Madi, M.A. & Lewis, J.W. (2005) Do the helminth parasites of wood mice interact? Journal of Animal Ecology 74, 982993.CrossRefGoogle Scholar
Bonvicino, C.R. (1994) Especiação do rato d'água Nectomys squamipes (Rodentia: Cricetidae): abordagem cariológica, morfológica e geográfica. 265 pp. PhD thesis, Universidade Federal do Rio de Janeiro.Google Scholar
Bush, A.O., Lafferty, D.K., Lotz, M.J. & Shostak, W.A. (1997) Parasitology meets and ecology on its own terms: Margolis et al. revisted. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Bush, A.O., Fernandez, J.C., Esch, G.W. & Seed, J.R. (2001) Parasitism: the diversity and ecology of animal parasites. 1st edn. Cambridge, Cambridge University Press.Google Scholar
Chieffi, P.P., Kloetzel, K. & de Siqueira, J.G. (1994) Absence of natural infection by Schistosoma mansoni in wild rodents captured in endemic areas for schistosomiasis in the state of Alagoas, Brazil. Revista Instituto de Medicina Tropical de São Paulo 36, 377378.CrossRefGoogle ScholarPubMed
Christensen, N.O., Nidal, R., Frandsen, F. & Nansen, P. (1981) Homologous immunotolerance and decreased resistance to Schistosoma mansoni in Echinostoma revolutum infected mice. Journal of Parasitology 67, 161166.CrossRefGoogle ScholarPubMed
D'Andrea, P.S., Horta, C., Cerqueira, R. & Rey, L. (1996) Breeding of the water rat ( Nectomys squamipes ) in the laboratory. Laboratory Animal 30, 369376.CrossRefGoogle ScholarPubMed
D'Andrea, P.S., Maroja, L.S., Gentile, R., Cerqueira, R., Maldonado, A. Jr & Rey, L. (2000) The parasitism of Schistosoma mansoni (Digenea: Trematoda) in naturally infected population of water rats, Nectomys squamipes (Rodentia: Sigmodontinae) in Brazil. Parasitology 120, 573582.CrossRefGoogle ScholarPubMed
D'Andrea, P.S., Fernandes, F.A., Cerqueira, R. & Rey, L. (2002) Experimental evidence and ecological perspectives for the adaptation of Schistosoma mansoni Sambon, 1907 (Digenea: Schistosomatidae) to a wild host, the water rat Nectomys squamipes Brants, 1827 (Rodentia: Sigmodontinae). Memórias do Instituto Oswaldo Cruz 97(Suppl.1), 1114.CrossRefGoogle ScholarPubMed
Gentile, R., D'Andrea, P.S., Cerqueira, R. & Maroja, L.S. (2000) Population dynamics and reproduction of marsupials and rodents in a Brazilian rural area: a five year study. Studies on Neotropical Fauna and Environment 35, 19.CrossRefGoogle Scholar
Giovanelli, A., Soares, M.S., D'Andrea, O.S., Gonçalves, M.M.L. & Rey, L. (2001) Abundância e infecção do molusco Biomphalaria glabrata pelo Schistosoma mansoni em uma localidade do município de Sumidouro, RJ, Brasil. Revista de Sáude Pública 35, 523530.CrossRefGoogle Scholar
Gomes, D.C. & Vicente, J.J. (1984) Helmintos parasitos de Nectomys squamipes (Brants) do município de Sumidouro, RJ. Memórias do Instituto Oswaldo Cruz 79, 6773.CrossRefGoogle Scholar
Guitton, N., Araújo-Filho, N.A. & Sherlock, I.A. (1986) Ectoparasitos de roedores e marsupiais no ambiente silvestre de Ilha Grande, Estado do Rio de Janeiro, Brasil. Memórias do Instituto Oswaldo Cruz 81, 233234.CrossRefGoogle Scholar
Hobmaier, M. (1941) Extramammalian phase of Physaloptera maxillaris Nolin 1860. Journal of Parasitology 27, 233236.CrossRefGoogle Scholar
Lello, J., Boag, B., Fenton, A., Stevenson, I.R. & Hudson, P.J. (2004) Competion and mutualism among the gut helminths of a mammalian host. Nature 428, 840841.CrossRefGoogle Scholar
Ludwig, J.A. & Reynolds, J.F. (1988) Statistical ecology: a primer in methods and computing. New York, Wiley Interscience Publications.Google Scholar
Maldonado, A. Jr, Machado, e, Silva, J.R., Rodrigues, e, Silva, R., Lenzi, H.L. & Rey, L. (1994) Evaluation of the resistance to Schistosoma mansoni infection in Nectomys squamipes (Rodentia: Cricetidae), a natural host of infection in Brasil. Revista do Instituto de Medicina Tropical de São Paulo 36, 193198.CrossRefGoogle Scholar
Maldonado, A., Coura, R. Jr, Garcia, J.S., Lanfredi, R.M. & Rey, L. (2001a) Changes on Schistosoma mansoni (Digenea: Schistosomatidae) worm load in Nectomys squamipes (Rodentia: Sigmodontinae) concurrently infected with Echinostoma paraensei (Digenea: Echinostomatidae). Memórias do Instituto Oswaldo Cruz 96(Suppl), 193198.CrossRefGoogle ScholarPubMed
Maldonado, A. Jr, Loker, E.S., Morgan, J.A.T., Rey, L. & Lanfredi, R.M. (2001b) Description of the adult worms of a new Brazilian isolate of Echinostoma paraensei (Platyhelminthes: Digenea) from its natural vertebrate host Nectomys squamipes by light and scanning electron microscopy and molecular analysis. Parasitology Research 87, 840848.Google ScholarPubMed
Maldonado, A. Jr, Vieira, G.O., Garcia, S.J., Rey, L. & Lanfredi, R.M. (2001c) Biological aspects of a new isolate of Echinostoma paraensei (Digenea: Echinostomatidae): susceptibility of sympatric snails and the natural vertebrate host. Parasitology Research 87, 853859.Google ScholarPubMed
Moraes-Neto, A.H., Lanfredi, R.M. & Souza, W. (1997) Litomosoides chagasfilhoi sp. n. (Nematoda: Filarioidea) parasite of the abdominal cavity of Akodon cursor (Winge, 1887) (Rodentia: Muridae) from Brazil. Parasitology Research 83, 137143.CrossRefGoogle Scholar
Nimer, E. (1979) Climatologia do Brasil. SUPREN, Rio de Janeiro.Google Scholar
Nollen, P.M. (1996) The mating behaviour of Echinostoma caproni and E. trivolvis in concurrent infection in hamster. International Journal for Parasitology 27, 7175.CrossRefGoogle Scholar
Poulin, R. (2001) Interactions between species and the structure of helminth communities. Parasitology 122, S3S11.CrossRefGoogle ScholarPubMed
Renz, A. & Wenk, P. (1981) Intracellular development of the cotton-rat filaria Litomosoides carinii in the vector mite Ornithonyssus bacoti. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 166168.CrossRefGoogle ScholarPubMed
Rey, L. (1993) Non-human vertebrate host of Schistosoma mansoni and schistosomiasis transmission in Brazil. Research and Reviews in Parasitology 53, 1325.Google Scholar
Silva, M.C., Silva, R.R.E., Hulstijn, M., Neves, R.H., Panasco, M.S., Lenzi, H.L. & Machado-Silva, J.R. (2002) Natural Schistosoma mansoni infection in Nectomys squamipes: histopathological and morphometric analysis in comparision to experimentally infected Nectomys squamipes and C3H/He mice. Memórias do Instituto Oswaldo Cruz 97(Suppl), 129142.CrossRefGoogle Scholar
Thul, J.E., Forrester, D.J. & Abercrombie, C.L. (1985) Ecology of parasitic helminths of wood ducks, Aix sponsa, in the Atlantic flyway. Proceedings of the Helminthological Society of Washington 52, 297310.Google Scholar
Travassos, L (1937a) Contribução ao conhecimento da filogenia dos Oxyuroidea (Nematoda). Memorias do Instituto Oswaldo Cruz 32, 607613.CrossRefGoogle Scholar
Travassos, L. (1937b) Revisão da familia Trichostrongylidae Leiper, 1912. Instituto Oswaldo Cruz.Google Scholar
Vaz, Z & Pereira, C (1935) Some Brazilian nematodes. Transactions of the American Microscopical Society 54, 3640.CrossRefGoogle Scholar
World Heath Organization. (1993) The control of schistosomiasis. WHO Techinical Report Series No. 830 WHO, Geneva.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edn. New Jersey, Prentice Hall.Google Scholar
Aho, J.M., Uglem, G.L., Moore, J.P. & Larsen, O.R. (1991) Bacteria associated with the tegument of Clinostomum marginatum (Digenea). Journal of Parasitology 77, 784786.CrossRefGoogle ScholarPubMed
Bakke, T.A. & Harris, P.D. (1998) Diseases and parasites in wild Atlantic salmon ( Salmo salar ) populations. Canadian Journal of Fisheries and Aquatic Sciences 55, 247266.CrossRefGoogle Scholar
Brown, E.E. & Gratzek, J.B. (1980) Fish farming handbook. Food, bait, tropicals and goldfish. 390 pp. Westport, Connecticut Avi Publishing Co., Inc.Google Scholar
Bruno, D.W. & Poppe, T. (1996) A colour atlas of salmonid diseases. 194 pp. London, Academic Press.Google Scholar
Cable, J. & Harris, P.D. (2002) Gyrodactylid developmental biology: historical review, current status and future trends. International Journal for Parasitology 32, 255280.CrossRefGoogle ScholarPubMed
Cable, J. & Tinsley, R.C. (1992) Microsporidian hyperparasites and bacteria associated with Pseudodiplorchis americanus (Monogenea: Polystomatidae). Canadian Journal of Zoology 70, 523529.CrossRefGoogle Scholar
Cable, J., Harris, P.D. & Bakke, T.A. (2000) Population growth of Gyrodactylus salaris (Monogenea) on Norwegian and Baltic Atlantic salmon ( Salmo salar ) stocks. Parasitology 121, 621629.CrossRefGoogle ScholarPubMed
Canning, E.U. (1975) The microsporidean parasites of Platyhelminthes: their morphology, development, transmission and pathogenicity. Commonwealth Institute of Helminthology Miscellaneous Publications 2, 132.Google Scholar
Cone, D.K. & Cusack, R. (1988) A study of Gyrodactylus colemanensis Mizelle and Kritsky, 1967 and Gyrodactylus salmonis (Yin and Sproston, 1948) (Monogenea) parasitizing captive salmonids in Nova Scotia. Canadian Journal of Zoology 66, 409415.CrossRefGoogle Scholar
Cone, D.K. & Odense, P.H. (1984) Pathology of five species of Gyrodactylus Nordmann, 1832 (Monogenea). Canadian Journal of Zoology 62, 10841088.CrossRefGoogle Scholar
Crouse-Eisnor, R.A., Cone, D.K. & Odense, P.H. (1985) Studies on relations of bacteria with skin surface of Carassius auratus L. and Poecilia reticulata. Journal of Fish Biology 27, 395402.CrossRefGoogle Scholar
Cusack, R. & Cone, D.K. (1985) A report of bacterial microcolonies on the surface of Gyrodactylus (Monogenea). Journal of Fish Diseases 8, 125127.CrossRefGoogle Scholar
Cusack, R., Rand, T. & Cone, D. (1988) A study of bacterial microcolonies associated with the body surface of Gyrodactylus colemanensis Mizelle and Kritsky, 1967 (Monogenea), parasitizing Salmo gairdneri Richardson. Journal of Fish Diseases 11, 271274.CrossRefGoogle Scholar
Dollfus, R.P. (1946) Parasites (animaux et vegetaux) des helminthes. Hyperparasites ennemis et prédateurs des helminthes parasites et des helminthes libre. Encyclopedie Biologique 27, 1482.Google Scholar
El-Naggar, M.M. & Kearn, G.C. (1989) Haptor glands in the gill-parasitic, ancyrocephaline monogenean Cichlidogyrus halli typicus and the report of a possible prokaryotic symbiont. International Journal for Parasitology 19, 401408.CrossRefGoogle Scholar
Heggberget, T.G. & Johnsen, B.O. (1982) Infestations by Gyrodactylus sp. of Atlantic salmon, Salmo salar L., in Norwegian rivers. Journal of Fish Biology 21, 1526.CrossRefGoogle Scholar
Hughes-Stamm, S., Cribb, T.H. & Jones, M.K. (1999) Structure of the tegument and ectocommensal microorgansims of Gyliauchen nahaensis (Digenea: Gyliauchenidae), an inhabitant of herbivorous fish of the Great Barrier Reef, Australia. Journal of Parasitology 85, 10471052.CrossRefGoogle Scholar
Jansen, P.A. & Bakke, T.A. (1991) Temperature-dependent reproduction and survival of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes: Monogenea) on Atlantic salmon ( Salmo salar L.). Parasitology 102, 105112.CrossRefGoogle ScholarPubMed
Jansen, P.A. & Bakke, T.A. (1993a) Regulatory processes in the monogenean Gyrodactylus salaris Malmberg – Atlantic salmon ( Salmo salar L.) association. II. Experimental studies. Fisheries Research 17, 103114.CrossRefGoogle Scholar
Jansen, P.A. & Bakke, T.A. (1993b) Regulatory processes in the monogenean Gyrodactylus salaris Malmberg – Atlantic salmon ( Salmo salar L.) association I. Field studies in south-east Norway. Fisheries Research 17, 87101.CrossRefGoogle Scholar
Johnsen, B.O. (1978) The effect of an attack by the parasite Gyrodactylus salaris on the population of salmon parr in the river Lakselva, Misvær in Northern Norway. Astarte 11, 79.Google Scholar
Johnsen, B.O., Møkkelgjerd, P.I. & Jensen, A.J. (1999) The parasite Gyrodactylus salaris on salmon parr in Norwegian rivers, status report at the beginning of year 2000. NINA Oppdargsmelding 617, 1129 (in Norwegian with English summary).Google Scholar
Kritsky, D.C. (1978) The cephalic glands and associated structures in Gyrodactylus eucaliae Ikezaki and Hoffman, 1957 (Monogenea: Gyrodactylidae). Proceedings of the Helminthological Society of Washington 45, 3749.Google Scholar
Lasee, B.A. & Sutherland, D.R. (1993) Bacterial colonization of tegumental surfaces of Culaeatrema inconstans Lasee et al., 1988 (Digenea) from the brook stickleback, Culaea inconstans. Journal of Fish Diseases 16, 8385.CrossRefGoogle Scholar
Lindblom, G.-B. & Nilsson, L.-Å. (1994) Interaction between Campylobacter jejuni / coli and Schistosoma mansoni, a helminth parasite. Bulletin of the Scandinavian Society of Parasitology 4, 18.Google Scholar
Lom, J. & Dykovaá, I. (1992) Protozoan parasites of fishes. 315 pp. Amsterdam, Elsevier.Google Scholar
Lo Verde, P.T., Amento, C. & Higashi, G.I. (1980) Parasite–parasite interaction of Salmonella typhimurium and Schistosoma. Journal of Infectious Diseases 141, 177185.CrossRefGoogle ScholarPubMed
Lundin, K. (1998) Symbiotic bacteria on the epidermis of species of the Nemertodermatida (Platyhelminthes Acoelomorpha). Acta Zoologica 79, 187191.CrossRefGoogle Scholar
Lyons, K.M. (1969a) Sense organs of monogeneans ending in a typical cilium. Parasitology 59, 431443.CrossRefGoogle Scholar
Lyons, K.M. (1969b) Compound sensilla in monogenean skin parasites. Parasitology 59, 444455.CrossRefGoogle Scholar
Lyons, K.M. (1970) Fine structure of the outer epidermis of the viviparous monogenean Gyrodactylus sp. from the skin of Gasterosteus aculeatus. Journal of Parasitology 56, 11101117.CrossRefGoogle Scholar
Morris, G.P. (1973) The morphology of associations between a trematode ( Megalodiscus temperatus ) and bacteria. Canadian Journal of Zoology 51, 13131314.CrossRefGoogle Scholar
Morris, G.P. & Halton, D.W. (1975) The occurrence of bacteria and mycoplasma-like organisms in a monogenean parasite, Diclidophora merlangi. International Journal for Parasitology 5, 495498.CrossRefGoogle Scholar
Poléo, A.B.S., Schjolden, J., Hansen, H., Bakke, T.A., Mo, T.A., Rosseland, B.O. & Lydersen, E. (2003) The effect of various metals on Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon ( Salmo salar ). Parasitology 128, 19.Google Scholar
Rego, A.A. & Gibson, D.I. (1989) Hyperparasitism by helminths: new records of cestodes and nematodes in protocephalid cestodes from South American siluriform fishes. Memorias do Instituto Oswaldo Cruz 84, 371376.CrossRefGoogle Scholar
Rohde, K. (1986) Ultrastructure of the pharynx and some parenchyma cells of Zeuxapta seriolae and Paramicrocotyloides reticularis (Monogenea: Polyopisthocotylea: Microcotylidae). Australian Journal of Zoology 34, 473484.CrossRefGoogle Scholar
Salte, R. & Bentsen, H.B. (2004) Avl for økt motstand mot Gyrodactylus salaris -infeksjon. Norsk Veterinærtidsskrift 3, 186189 (in Norwegian).Google Scholar
Snieszko, S.F. and Bullock, G.L. (1968) Freshwater fish diseases caused by bacteria belonging to the genera Aeromonas and Pseudomonas . US Department of International Fisheries and Wildlife Services, Fish Diseases Leaflet, 11.Google Scholar
Soleng, A., Poleéo, A.B.S., Alstad, N.E.W. & Bakke, T.A. (1999a) Aqueous aluminium eliminates Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon. Parasitology 119, 1925.CrossRefGoogle ScholarPubMed
Soleng, A., Jansen, P.A. & Bakke, T.A. (1999b) Transmission of the monogenean Gyrodactylus salaris. Folia Parasitologica 46, 179184.Google Scholar
Soleng, A., Poléo, A.B.S. & Bakke, T.A. (2005) Toxicity of aqueous aluminium to the ectoparasitic monogenean Gyrodactylus salaris. Aquaculture 250, 616620.CrossRefGoogle Scholar
Tuazon, C.U., Nash, T., Cheever, A. & Neva, F. (1985) Interaction of Schistosoma japonicum with Salmonella and other gram-negative bacteria. Journal of Infectious Diseases 152, 722726.CrossRefGoogle ScholarPubMed
Veltkamp, C.J., Chubb, J.C., Birch, S.P. & Eaton, J.W. (1994) A simple freeze dehydration method for studying epiphytic and epizoic communities using the scanning electron microscope. Hydrobiologica 288, 3338.CrossRefGoogle Scholar
Veltkamp, C.J., Richards, G.R. & Chubb, J.C. (1996) Freeze fixation-dehydration as a method of preparation of Gyrodactylus (Monogenea) for scanning electron microscopy. Journal of Helminthology 70, 8589.CrossRefGoogle Scholar
Vickerman, K. (1972) The host–parasite interface of parasitic protozoa. Some problems posed by ultrastructural studies. Symposia of the British Society for Parasitology 10, 7191.Google Scholar
Whittington, I.D., Cribb, B.W., Hamwood, T.E. & Halliday, J. (2000) Host specificity of monogenean (Platyhelminth) parasites: a role for anterior adhesive areas? International Journal for Parasitology 30, 305320.CrossRefGoogle ScholarPubMed
Williams, J.B. (1991) Rickettsiae and giant lysosomes in the testes of Temnocephala novaezealandiae (Platyhelminthes: Temnocephaloidea). Journal of Submicroscopical Cytology and Pathology 23, 447455.Google ScholarPubMed
Williams, J.B. (1992) Ultrastructure of the intestinal epithelium and prey microorganisms of Troglocaridicola mrazeki (Platyhelminthes: Scutaiellidae). Journal of Submicroscopical Cytology and Pathology 24, 473481.Google Scholar
Felleisen, R. & Gottstein, B. (1994) Comparative analysis of full-length antigen II/3 from Echinococcus multilocularis and E. granulosus. Parasitology 109, 223232.CrossRefGoogle ScholarPubMed
Frosch, P.M., Frosch, M., Pfister, T., Schaad, V. & Bitter-Suermann, D. (1991) Cloning and characterization of an immunodominant major surface antigen of Echinococcus multilocularis. Molecular and Biochemical Parasitology 48, 121130.CrossRefGoogle ScholarPubMed
Furuya, K., Sato, H. & Kumagai, M. (1987) Application of Western blotting method for immunoserologic diagnosis of hydatidosis. Journal of Clinical and Experimental Medicine (IGAKU NO AYUMI) 141, 4142 (in Japanese).Google Scholar
Furuya, K., Sasaki, S., Honma, H., Kumagai, M., Sato, N., Takahashi, M. & Uchino, J. (1989) Serologic investigations of human alveolar hydatid disease by Western blotting and indirect histo-immunoperoxidase techniques. Japanese Journal of Parasitology 38, 184193.Google Scholar
Furuya, K., Nishizuka, M., Honma, H., Kumagai, M., Sato, N., Takahashi, M. & Uchino, J. (1990) Prevalence of human alveolar echinococcosis in Hokkaido as evaluated by Western blotting. Japanese Journal of Medical Science and Biology 43, 4349.CrossRefGoogle ScholarPubMed
Furuya, K., Kawanaka, M., Yamano, K., Sato, N. & Honma, H. (2004) Laboratory evaluation of commercial immunoblot assay kit for serodiagnosis of Echinococcus infections using sera from patients with alveolar hydatidosis in Hokkaido. Journal of the Japanese Association for Infectious Diseases 78, 320326.Google ScholarPubMed
Hada, N., Hayashi, E. & Takeda, T. (1999) Synthetic studies on glycosphingolipids from the parasite Echinococcus multilocularis. Carbohydrate Research 316, 5870.CrossRefGoogle ScholarPubMed
Helbig, M., Frosch, P., Kern, P. & Frosch, M. (1993) Serological differentiation between cystic and alveolar echinococcosis by use of recombinant larval antigens. Journal of Clinical Microbiology 31, 32113215.CrossRefGoogle ScholarPubMed
Hubert, K., Cordero, E., Frosch, M. & Solomon, F. (1999) Activities of the EM10 protein from Echinococcus multilocularis in cultured mammalian cells demonstrate functional relationships to ERM family members. Cell Motility and the Cytoskeleton 42, 178188.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Hülsmeier, A.J., Gehrig, P.M., Geyer, R., Sack, R., Gottstein, B., Deplazes, P. & Köler, P. (2002) Major Echinococcus multilocularis antigen is a mucin-type glycoprotein. Journal of Biological Chemistry 277, 57425748.CrossRefGoogle ScholarPubMed
Ito, A., Xiao, N., Liance, M., Sato, M.O., Sako, Y., Mamuti, W., Ishikawa, Y., Nakao, M., Yamasaki, H., Nakaya, K., Bardonnet, K., Bresson-Hadni, S. & Vuitton, D.A. (2002) Evaluation of an enzyme-linked immunosorbent assay (ELISA) with affinity-purified Em18 and an ELISA with recombinant Em18 for differential diagnosis of alveolar echinococcosis: results of a blind test. Journal of Clinical Microbiology 40, 41614165.CrossRefGoogle Scholar
Kannagi, R., Nudelman, E., Levery, S.B. & Hakomori, S. (1982) A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to developmentally-regulated antigen, SSEA-1. Journal of Biological Chemistry 257, 1486514874.CrossRefGoogle Scholar
Kimura, H., Furuya, K., Kawase, S., Sato, C., Yamano, K., Takahashi, K., Uraguchi, K., Ito, T., Yagi, K. & Sato, N. (1999) Recent epidemiologic trends in alveolar echinococcosis prevalence in humans and animals in Hokkaido. Journal of the Japanese Association for Infectious Diseases 52, 117120.CrossRefGoogle ScholarPubMed
Kouguchi, H., Suzuki, T., Yamano, K., Honma, H. & Sawada, Y. (2005) Characterization of various recombinant antigens from Echinococcus multilocularis for use in the immunodiagnosis. Protein Journal 24, 5764.CrossRefGoogle ScholarPubMed
Marcus, D.M., Kundu, S.K. & Suzuki, A. (1981) The P blood group system: recent progress in immunochemistry and genetics. Seminars in Hematology 18, 6371.Google Scholar
Nagano, M., Sato, C. & Furuya, K. (1995) Human alveolar echinococcosis seroprevalence assessed by Western blotting in Hokkaido. Japanese Journal of Medical Science and Biology 48, 157161.CrossRefGoogle ScholarPubMed
Persat, F., Vincent, C., Mojon, M. & Petavy, A.F. (1991) Detection of antibodies against glycolipids of Echinococcus multilocularis metacestodes in sera of patients with alveolar hydatid disease. Parasite Immunology 13, 379389.CrossRefGoogle ScholarPubMed
Persat, F., Bouhours, J.F., Mojon, M. & Petavy, A.F. (1992) Glycosphingolipids with Galβ1–6Gal sequences in metacestodes of the parasite Echinococcus multilocularis. Journal of Biological Chemistry 267, 87648769.CrossRefGoogle Scholar
Sato, C. & Furuya, K. (1994) Isolation and characterization of a diagnostic polysaccharide antigen from larval Echinococcus multilocularis. Japanese Journal of Medical Science and Biology 47, 6571.CrossRefGoogle ScholarPubMed
Sato, H., Mitamura, H., Arai, J. & Kumagai, M. (1983a) Serological diagnosis of human hydatid diseases by enzyme-linked immunosorbent assay (Part 1) enzyme-linked immunosorbent assay by multilocular Echinococcus antigen. Report of the Hokkaido Institute of Public Health 33, 815 (in Japanese).Google Scholar
Sato, H., Mitamura, H., Arai, J. & Kumagai, M. (1983b) Serological diagnosis of human hydatid diseases by enzyme-linked immunosorbent assay (Part 2) application and evaluation on the health examination. Report of the Hokkaido Institute of Public Health 33, 1620 (in Japanese).Google Scholar
Vogel, M., Gottstein, B., Muller, N. & Seeback, T. (1988) Production of a recombinant antigen of Echinococcus multilocularis with high immunodiagnostic sensitivity and specificity. Molecular and Biochemical Parasitology 31, 117125.CrossRefGoogle ScholarPubMed
Watkins, W.M. (1980) Biochemistry and genetics of the ABO, Lewis and P blood group systems. Advances in Human Genetics 10, 1136.Google ScholarPubMed
Yamamura, T., Hada, N., Kaburaki, A., Yamano, K. & Takeda, T. (2004) Synthetic studies on glycosphingolipids from Protostomia phyla: total syntheses of glycosphingolipids from the parasite, Echinococcus multilocularis. Carbohydrate Research 339, 24792759.CrossRefGoogle ScholarPubMed
Yamano, K., Yagi, K., Furuya, K., Sawada, Y. & Honma, H. (2005) Active alveolar hydatidosis with sero-negativity for antibody to the 18 kDa antigen. Journal of the Japanese Association for Infectious Diseases 58, 122124.CrossRefGoogle Scholar
Campbell, W.C. (1983) Progress and prospects in the chemotherapy of nematode infections of man and other animals. Journal of Nematology 15, 608615.Google ScholarPubMed
Conder, G.A., Jen, L.-W. Marbury, K.S., Johnson, S.S., Guimond, P.M., Thomas, E.M. & Lee, B.L. (1990) A novel anthelmintic model utilizing jirds, Meriones unguiculatus, infected with Haemonchus contortus. Journal of Parasitology 76, 168170.CrossRefGoogle ScholarPubMed
Court, J.P. & Lees, G.M. (1985) The efficacy of benzimidazole anthelmintics against late fourth stage larvae of Trichostrongylus colubriformis in gerbils and Nippostrongylus brasiliensis in rats. Veterinary Parasitology 18, 359365.CrossRefGoogle ScholarPubMed
Court, J.P., Lees, G.M., Coop, R.L., Angus, K.W. & Beesley, J.E. (1988) An attempt to produce Ostertagia circumcincta infections in mongolian gerbils. Veterinary Parasitology 28, 7991.CrossRefGoogle ScholarPubMed
Gonzalez, I.C., Davis, L.N. & Smith, C.K. II (2004) Novel thiophenes and analogues with anthelmintic activity against Haemonchus contortus. Bioorganic and Medicinal Chemistry Letters 14, 40374043.CrossRefGoogle ScholarPubMed
Johnson, S.S., Coscarelli, E.M., Davis, J.P., Zaya, R.M., Day, J.S., Barsuhn, C.L., Martin, R.A., Vidmar, T.J., Lee, B.H., Conder, G.A., Geary, T.G., Ho, N.F.H. & Thompson, D.P. (2004) Interrelationships among physicochemical properties, absorption and anthelmintic activities of 2-desoxoparaherquamide and selected analogs. Journal of Veterinary Pharmacology and Therapeutics 27, 169181.CrossRefGoogle ScholarPubMed
Kates, K.C. & Thompson, D.E. (1967) Activity of three anthelmintics against mixed infections of two Trichostrongylus species in gerbils, sheep and goats. Proceedings of the Helminthological Society of Washington 34, 228236.Google Scholar
Leland, S.E. (1963) Preliminary evaluation of Trichostrongylus axei in the Mongolian gerbil as a screening system for anthelmintics of domestic animals. Journal of Parasitology. 49(Sect.2), 1516.Google Scholar
Meinke, P.T., Sinclair, P., Mrozik, H. O'Connor, S., Ostlind, D.A., Shoop, W.L., Arison, B.H. & Fisher, M.H. (1992) Synthesis of avermectin B1–4″,4″a-oxide: a precursor of potent anthelmintic agents. Bioorganic and Medicinal Chemistry Letters 2, 537540.CrossRefGoogle Scholar
Mrozik, H., Eskola, P., Fisher, M.H., Egerton, J.R., Cifelli, S. & Ostlind, D.A. (1982) Avermectin acyl derivatives with anthelmintic activity. Journal of Medicinal Chemistry 25, 658663.CrossRefGoogle ScholarPubMed
Ostlind, D.A. & Cifelli, S. (1981) Efficacy of thiabendazole, levamisole hydrochloride and the major natural avermectins against Trichostrongylus colubriformis in the gerbil ( Meriones unguiculatus ). Research in Veterinary Science 31, 255256.CrossRefGoogle ScholarPubMed
Panitz, E. & Shum, K.L. (1981) Efficacy of four anthelmintics in Trichostrongylus axei or T. colubriformis infections in the gerbil. Meriones unguiculatus. Journal of Parasitology 67, 135136.CrossRefGoogle ScholarPubMed
Schulman, M.D., Valentino, D., Hensens, O.D., Zink, D., Nallin, M., Kaplan, L. & Ostlind, D.A. (1985) Demethylavermectins, biosynthesis, isolation and characterization. Journal of Antibiotics 38, 14941498.CrossRefGoogle ScholarPubMed
Shoop, W.L., Egerton, J.R., Eary, C.H. & Suhayda, D. (1990) Anthelmintic activity of paraherquamide in sheep. Journal of Parasitology 76, 349351.CrossRefGoogle ScholarPubMed
Shoop, W.L., Michael, B.F., Haines, H.W. & Eary, C.H. (1992) Anthelmintic activity of paraherquamide in calves. Veterinary Parasitology 43, 259263.CrossRefGoogle ScholarPubMed
Williams, G.A.H. & Palmer, B.H. (1964) Trichostrongylus colubriformis (a nematode parasite of sheep and other ruminants) as a test organism in screening for sheep anthelmintics in the laboratory. Nature 203, 13991400.CrossRefGoogle ScholarPubMed