Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T19:30:47.738Z Has data issue: false hasContentIssue false

Moniezia expansa: the interproglottidal glands and their Secretions

Published online by Cambridge University Press:  05 June 2009

A. Gunn
Affiliation:
School of Animal Biology, University College of North Wales, Bangor, Gwynedd LL57 2UW, UK.
A. J. Probert
Affiliation:
School of Animal Biology, University College of North Wales, Bangor, Gwynedd LL57 2UW, UK.

Abstract

Acerylcholinesterase (EC 3:1:1:7) and alkaline phoshatase (EC 3:1:3:1) were detected in secretions of Moniezia expansa maintained in vitro. Ultrastructural cytochemical studies demonstrated acetylcholinesterase activity on the surface of the microtriches at the base of the interproglittidal glands and in the gland lumen but not in the distal tegument or the gland cells. Alkaline phoshatase activity was demonstrated in the cytoplasm of the gland cells and especially in their protoplasmic connections with the distal tegument. Activity was also found in the distal tegument and the microtriches. It is suggested that the acetylcholinesterase secreted by M. expansa performs a metabolic role at the worms's surface.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anon (1979) Bio Rad protein assay instruction manual. Bulletin 1069. Bio Rad Laboratories, Richmond, California.Google Scholar
Bergmeyer, H. U. (1963) Methods of enzymatic analysis. 2nd Edition, Academic Press.Google Scholar
Billington, D., Evans, C. E., Godfrey, P. P. & Coleman, R. (1980) Effects of bile salts on the plasma membranes of isolated rat hepatocytes. Biochemical Journal, 188, 321327.CrossRefGoogle ScholarPubMed
Bremner, K. C., Ogilvie, B. M., Keith, R. C. & Berrie, D. A. (1973) Acetylcholinesterase secretion by parasitic nematodes III Oesophagostomum spp. International Journal of Parasitology, 3, 609618.CrossRefGoogle Scholar
Davies, C. (1979) The forebody glands and surface features of the metacercaria and adult of Microphallus similis. International Journal for Parasitology, 9, 553564.CrossRefGoogle Scholar
Erasmus, D. A. (1957) Studies on phosphatase system of cestodes. II. Studies on Cysticercus tenuicollis and Moniezia Expansa (adult). Parasitology, 47, 8191.CrossRefGoogle ScholarPubMed
Gunn, A., Probert, A. J. (1981) Moniezia expansa: subcellular distribution, kinetic properties of acetylcholinesterase and effects of inhibitors and anthelmintics. Experimental Parasitology, 51, 373381.CrossRefGoogle ScholarPubMed
Hamilton, T. A., Gornicki, S. Z. & Sussman, H. H. (1979) Alkaline phosphatase from human milk. Biochemical Journal, 177, 197201.CrossRefGoogle ScholarPubMed
Howells, R. E. & Erasmus, D. A. (1969) Histochemical observations on the tegumentary epithelium and interproglottidal gland of Moniezia expansa (Rud, 1805) cestoda cyclophyllidea. Parasitology, 59, 505518.CrossRefGoogle ScholarPubMed
Lee, D. L. (1970) The fine structure of the excretory system in adult Nippostrongylus brasiliensis (Nematoda) and a suggested function for the excretory glands. Tissue and Cell, 2, 225231.CrossRefGoogle Scholar
Lee, D. L., Rothman, A. H. & Senturia, J. B. (1963) Esterases in Hymenolepis and Hydatigera. Experimental Parasitology, 14, 285295.CrossRefGoogle ScholarPubMed
Lewis, P. R. & Shute, C. C. D. (1969) An electron microscope study of cholinesterase distribution in the rat adrenal medulla. Journal of microscopy, 89, 181193.CrossRefGoogle ScholarPubMed
Lillie, R. D. (1954) Histopathologic technic and practical histochemistry. Blakiston Co. Inc.: Philadelphia.Google Scholar
Mayahara, H. & Ogawa, K. (1968) The effect of thickness of specimen on the ultrastructural localization of alkaline phosphatase activity in the rat proximal convoluted tubule. Journal of Histochemistry and Cytochemistry, 16, 721724.CrossRefGoogle ScholarPubMed
McLaren, D. J., Burt, J. S. & Ogilvie, B. M. (1974) The anterior glands of Necator americanus (Nematoda: Strongyloidea) II. Cytochemical and functional studies. International Journal for Parasitology, 4, 3946.CrossRefGoogle ScholarPubMed
Millonig, G. (1961) Advantages of a phosphate buffer system for osmium tetroxide solutions in fixation. Journal of applied physics, 32, 16371639.Google Scholar
Pearse, A. G. E. (1972) Histochemistry theoretical and applied. Volume 2, 3rd Edition. Churchill Livingstone.Google Scholar
Singh, K. S. & Singh, K. P. (1958) Morphology and histochemistry of interproglottidal glands of Moniezia expansa. Indian Journal of Helminthology, 10, 113131.Google Scholar
Spurr, A. R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26, 31.CrossRefGoogle ScholarPubMed
Threadgold, L. T. (1968) Electron microscope studies on Fasciola hepatica VI. The ultrastructural localization of phosphatases. Experimental Parasitology, 23, 264276.CrossRefGoogle ScholarPubMed
Verheyen, A., Borgers, N., Vanparijs, O. & Thienpont, D. (1976) The effects of mebendazole on the ultrastructure of cestodes. In: Biochemistry of Parasites and host parasite relationships (Van Den Bossche, H., Editor) Pp. 605618. Elsevier/North Holland Biomedical Press: Amsterdam.Google Scholar