Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T12:39:04.137Z Has data issue: false hasContentIssue false

Molecular characterization of putative parasitism genes in the plant-parasitic nematode Meloidogyne hispanica

Published online by Cambridge University Press:  16 October 2014

A. Duarte*
Affiliation:
IMAR-CMA, Department of Life Sciences, University of Coimbra, P 3004 517, Coimbra, Portugal
C. Maleita
Affiliation:
CIEPQPF, Department of Chemical Engineering, University of Coimbra, P 3030 790Coimbra, Portugal
I. Tiago
Affiliation:
Center of Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, P 3004 517Coimbra, Portugal
R. Curtis
Affiliation:
Bionemax UK Ltd, Rothamsted Centre for Research and Enterprise, Harpenden, Hertfordshire, AL5 2JQ, UK
I. Abrantes
Affiliation:
IMAR-CMA, Department of Life Sciences, University of Coimbra, P 3004 517, Coimbra, Portugal
*

Abstract

Meloidogyne hispanica (Mhi) is a difficult-to-control polyphagous root-knot nematode (RKN) species of emerging importance for economically valuable crops. Nematode secretions are likely to be the first signals perceived by the plant and are thought to be involved in various aspects of the plant–nematode interaction. The aims of this work were to identify and characterize M. hispanica parasitism genes: cathepsin L cysteine protease (cpl-1), calreticulin (crt-1), β-1,4-endoglucanase-1 (eng-1) and manganese superoxide dismutase (mnsod). As there are no genomic data available for M. hispanica, primers were designed from the conserved regions of the putative parasitism genes in M.incognita and M. hapla and used to amplify the genes in M. hispanica, which led to the successful amplification of these genes in M. hispanica. Partial gene sequences were also obtained for M. arenaria, M. hapla, M. hispanica, M. incognita and M. javanicacpl-1, crt-1, eng-1 and mnsod genes, and their phylogenetic relationship analysed. In order to determine whether these genes are differentially expressed during M. hispanica development, cDNA was amplified from mRNA isolated from eggs, second-stage juveniles (J2) and females. Amplification products were observed from cDNA of all developmental stages for the Mhi-cpl-1 and Mhi-crt-1 genes. However, the gene Mhi-crt-1 exhibited intense amplification bands in females, while the Mhi-eng-1 gene was equally amplified in eggs and J2 and the Mhi-mnsod gene was only expressed in eggs. In comparison to the other RKN species, the genes Mhi-eng-1 and Mhi-mnsod showed transcription in different nematode developmental stages.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, P. & Williamson, V.M. (2010) Plant interaction: A sophisticated dialogue. Advances in Botanical Research 53, 147192.Google Scholar
Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G.J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V.C., Caillaud, M.C., Coutinho, P.M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J.V., Hamamouch, N., Hwezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T.R., Markov, G.V., Mcveigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Ségurens, B., Steinbach, D., Tytgat, T., Ugarte, E., Ghelder, C.V., Veronico, P., Baum, T.J., Blaxter, M., Bleve-Zacheo, T., Davis, E.L., Ewbank, J.J., Favery, B., Grenier, E., Henrissat, B., Jones, J.T., Laudet, V., Maule, A.G., Quesneville, H., Rosso, M.N., Schiex, T., Smant, G., Weissenbach, J. & Wincker, P. (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26, 909915.CrossRefGoogle ScholarPubMed
Atkinson, H.J., Urwin, P.E. & McPherson, M.J. (2003) Engineering plants for nematode resistance. Annual Review of Phytopathology 41, 615639.CrossRefGoogle ScholarPubMed
Bellafiore, S. & Briggs, S.P. (2010) Nematode effectors and plant responses to infection. Current Opinion in Plant Biology 13, 442448.CrossRefGoogle ScholarPubMed
Bellafiore, S., Shen, Z., Rosso, M.N., Abad, P., Shih, P. & Briggs, S.P. (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathogens 4, 112.CrossRefGoogle ScholarPubMed
Bleve-Zacheo, T., Melillo, M.T. & Castagnone-Sereno, P. (2007) The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology 1, 116.Google Scholar
Davis, E.L., Hussey, R.S. & Baum, T.J. (2004) Getting to the roots of parasitism by nematodes. Trends in Parasitology 20, 134141.CrossRefGoogle Scholar
Davis, E.L., Hussey, R.S., Mitchum, M.G. & Baum, T.J. (2008) Parasitism genes in nematode-plant interactions. Current Opinion in Plant Biology 11, 360366.CrossRefGoogle Scholar
Davis, E., Haegeman, A. & Kikuchi, T. (2011) Degradation of the plant cell wall by nematodes. pp. 225272in Jones, J., Gheysen, G. & Fenoll, C. (Eds) Genomics and molecular genetics of plant–nematode interactions. Berlin, Springer.Google Scholar
Duarte, A., Curtis, R., Maleita, C. & Abrantes, I. (2014) Characterization of the venom allergen-like protein (vap-1) and the fatty acid and retinol binding protein (far-1) genes in Meloidogyne hispanica. European Journal of Plant Pathology 139, 825836.CrossRefGoogle Scholar
Dubreuil, G., Magliano, M., Dubrana, M., Lozano, J., Lecomte, P., Favery, B., Abad, P. & Rosso, M. (2009) Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. Journal of Experimental Botany 60, 40414050.CrossRefGoogle Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Gheysen, G. & Fenoll, C. (2002) Gene expression in nematode feeding sites. Annual Review of Phytopathology 40, 191219.CrossRefGoogle ScholarPubMed
Haegeman, A., Mantelin, S., Jones, J.T. & Gheysen, G. (2012) Functional roles of effectors of plant-parasitic nematodes. Gene 492, 1931.CrossRefGoogle ScholarPubMed
Haegeman, A., Bauters, L., Kyndt, T., Rahman, M.M. & Gheysen, G. (2013) Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Molecular Plant Pathology 14, 379390.CrossRefGoogle ScholarPubMed
Hassan, S., Behm, C.A. & Mathesius, U. (2010) Effectors of plant parasitic nematodes that re-program root cell development. Functional Plant Biology 37, 933942.CrossRefGoogle Scholar
Hewezi, T. & Baum, T.J. (2013) Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions 26, 916.CrossRefGoogle ScholarPubMed
Hirschmann, H. (1986) Meloidogyne hispanica n. sp. (Nematoda: Meloidogynidae), the ‘Seville root-knot nematode’. Journal of Nematology 18, 520532.Google Scholar
Hussey, R.S. (1989) Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology 27, 123141.CrossRefGoogle Scholar
Hussey, R.S. & Barker, K.R. (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 10251028.Google Scholar
Ithal, N., Recknor, J., Nettleton, D., Maier, T., Baum, T.J. & Mitchum, M.G. (2007) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions 20, 510525.CrossRefGoogle ScholarPubMed
Jaouannet, M., Perfus-Barbeoch, L., Deleury, E., Magliano, M., Engler, G., Vieira, P., Danchin, E.G.J., Da Rocha, M., Coquillard, P., Abad, P. & Rosso, M.N. (2012) A root-knot nematode secreted protein is injected into giant cells and targeted to the nuclei. New Phytologist 194, 924931.CrossRefGoogle Scholar
Jaouannet, M., Magliano, M., Arguel, M.J., Gourgues, M., Evangelist, E., Abad, P. & Rosso, M.N. (2013) The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant-Microbe Interactions 26, 97105.CrossRefGoogle ScholarPubMed
Jaubert, S., Laffaire, J.B., Abad, P. & Rosso, M.N. (2002) A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. Federation of European Biochemical Societies 522, 109112.CrossRefGoogle ScholarPubMed
Jaubert, S., Milac, A.L., Petrescu, A.J., Almeida-Engler, J., Abad, P. & Rosso, M. (2005) In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode. Molecular Plant-Microbe Interactions 18, 12771284.CrossRefGoogle ScholarPubMed
Jones, D.T., Taylor, W.R. & Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8, 275282.Google ScholarPubMed
Jukes, T.H. & Cantor, C.R. (1969) Evolution of protein molecules. pp. 21132in Munro, H.N. (Ed.) Mammalian protein metabolism III. New York, Academic Press.CrossRefGoogle Scholar
Li, X., Zhuo, K., Luo, M., Sun, L. & Liao, J. (2011) Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus. Experimental Parasitology 128, 121126.CrossRefGoogle ScholarPubMed
Lilley, C.J., Urwin, P.E., McPherson, M.J. & Atkinson, H.J. (1996) Characterisation of intestinally active proteases of cyst-nematodes. Parasitology 113, 415424.CrossRefGoogle ScholarPubMed
Lozano-Torres, J.L., Wilbers, R.H.P., Gawronski, P., Boshoven, J.C., Finkers-Tomczak, A., Cordewener, J.H.G., America, A.H.P., Overmars, H.A., Klooster, J.W.V., Baranowski, L., Sobczak, M., Ilyas, M., Van der Hoorn, R.A.L., Schots, A.M., de Wit, P.J.G., Bakker, J., Goverse, A. & Smant, G. (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and nematode. Proceedings of the National Academy of Sciences 109, 1011910124.CrossRefGoogle Scholar
Maleita, C., Santos, M.C., Curtis, R., Powers, S. & Abrantes, I.M. de O. (2011) Effect of the Mi gene on reproduction of Meloidogyne hispanica on tomato genotypes. Nematology 13, 939949.Google Scholar
Maleita, C., Curtis, R., Powers, S. & Abrantes, I. (2012a) Host status of Meloidogyne hispanica. European Journal Plant Pathology 133, 449460.CrossRefGoogle Scholar
Maleita, C., Curtis, R. & Abrantes, I.M. de O. (2012b) Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathology 61, 10021010.CrossRefGoogle Scholar
Maleita, C., Simões, M.J., Egas, C., Curtis, R. & Abrantes, I.M. de O. (2012c) Biometrical, biochemical, and molecular diagnosis of Portuguese Meloidogyne hispanica isolates. Plant Disease 96, 865873.CrossRefGoogle ScholarPubMed
Maleita, C., Curtis, R., Powers, S. & Abrantes, I. (2012d) Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes. Phytopathologia Mediterranea 51, 566576.Google Scholar
Michaud, D., Cantin, L., Bonade-Bottino, M., Jouanin, L. & Vrain, T.C. (1996) Identification of stable plant cystatin/nematode protease complexes using mildly denaturing gelatin/polyacrylamide gel electrophoresis. Electrophoresis 17, 13731379.CrossRefGoogle ScholarPubMed
Mitreva-Dautova, M., Roze, E., Overmars, H., de Graaff, L., Schots, A., Helder, J., Goverse, A., Bakker, J. & Smant, G. (2006) A symbiont-independent endo-1,4-beta-xylase from the plant-parasitic nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions 19, 521529.CrossRefGoogle ScholarPubMed
Molinari, S., Rosso, L. & Ornat Longaron, C. (2005) The role of antioxidant enzymes in the virulence of root-knot nematodes on resistant tomato. Nematropica 35, 88.Google Scholar
Neveu, C., Abad, P. & Castagnone-Sereno, P. (2003) Molecular cloning and characterization of animal cathepsin L protease from the plant-parasitic nematode Meloidogyne incognita. Physiological and Molecular Plant Pathology 63, 159165.CrossRefGoogle Scholar
Opperman, C.H., Bird, D.M., Williamson, V.M., Rokhsar, D.S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T.D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B.R., Thomas, V.P. & Windham, E. (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America 105, 1480214807.CrossRefGoogle ScholarPubMed
Orui, Y. (1999) Species identification of Meloidogyne spp. (Nematoda: Meloidogynae) in Japan by Random Amplified Polymorphic DNA (RAPD-PCR). Japanese Journal of Nematology 29, 715.Google Scholar
Peng, H., Gao, B.-L., Kong, L.-A., Yu, Q., Huang, W.-K., He, X.-F., Long, H.-B. & Peng, D.-L. (2013) Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destructor by expressed sequence tags analysis. PLoS One 8, e69579.CrossRefGoogle ScholarPubMed
Quentin, M., Abad, P. & Favery, B. (2013) Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in Plant Science 4, 53.CrossRefGoogle ScholarPubMed
Rivas, S. (2012) Nuclear dynamics during plant innate immunity. Plant Physiology 158, 8794.CrossRefGoogle ScholarPubMed
Rosso, L.C. (2009) Cloning, sequence, and expression analysis of a new MnSOD-encoding gene from the root-knot nematode Meloidogyne incognita. Journal of Nematology 41, 5259.Google ScholarPubMed
Rosso, M.N., Favery, B., Piotte, C., Arthaud, L., Boer, J.M., Hussey, R.S., Bakker, J., Baum, T.J. & Abad, P. (1999) Isolation of a cDNA encoding a β-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Molecular Plant-Microbe Interactions 12, 585591.CrossRefGoogle ScholarPubMed
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Shingles, J., Lilley, C.J., Atkinson, H.J. & Urwin, P.E. (2007) Meloidogyne incognita: molecular and biochemical characterization of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology 115, 114120.CrossRefGoogle ScholarPubMed
Smant, G., Stokkermans, J.P.W.G., Yan, Y., De Boer, J.M., Baum, T.J., Wang, X., Hussey, R., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. & Bakker, J. (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant parasitic cyst nematodes. Proceedings of the National Academy of Sciences of the USA 95, 49064911.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Ultaigh, S.N.A., Carolan, J.C., Britton, C., Murray, L. & Ryan, M.F. (2009) A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1. Experimental Parasitology 121, 293299.CrossRefGoogle ScholarPubMed
Urwin, P.E., Atkinson, H.J., Waller, D.A. & McPherson, M.J. (1995) Engineering oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. The Plant Journal 8, 121131.CrossRefGoogle ScholarPubMed
Wang, W., Meyers, D., Yan, Y., Baum, T., Smant, G., Hussey, R. & Davis, E. (1999) In planta localization of a β-1,4-endoglucanase secreted by Heterodera glycines. Molecular Plant-Microbe Interactions 12, 6467.CrossRefGoogle ScholarPubMed
Wubben, M., Ganji, S. & Callahan, F.E. (2010) Identification and molecular characterization of a β-1,4-endoglucanase gene (Rr-eng-1) from Rotylenchulus reniformis. Journal of Nematology 41, 342351.Google Scholar
Zuckerkandl, E. & Pauling, L. (1965) Evolutionary divergence and convergence in proteins. pp. 97166in Bryson, V. & Vogel, H.J. (Eds) Evolving genes and proteins. New York, Academic Press.CrossRefGoogle Scholar