Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T23:44:35.334Z Has data issue: false hasContentIssue false

Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis

Published online by Cambridge University Press:  24 April 2017

G.X. Ma
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
R.Q. Zhou*
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
L. Hu
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
Y.L. Luo
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
Y.F. Luo
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
H.H. Zhu
Affiliation:
Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
*

Abstract

Toxocara canis is an important but neglected zoonotic parasite, and is the causative agent of human toxocariasis. Chondroitin proteoglycans are biological macromolecules, widely distributed in extracellular matrices, with a great diversity of functions in mammals. However, there is limited information regarding chondroitin proteoglycans in nematode parasites. In the present study, a female-enriched chondroitin proteoglycan 2 gene of T. canis (Tc-cpg-2) was cloned and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the transcription levels of Tc-cpg-2 among tissues of male and female adult worms. A 485-amino-acid (aa) polypeptide was predicted from a continuous 1458-nuleotide open reading frame and designated as TcCPG2, which contains a 21-aa signal peptide. Conserved domain searching indicated three chitin-binding peritrophin-A (CBM_14) domains in the amino acid sequence of TcCPG2. Multiple alignment with the inferred amino acid sequences of Caenorhabditis elegans and Ascaris suum showed that CBM_14 domains were well conserved among these species. Phylogenetic analysis suggested that TcCPG2 was closely related to the sequence of chondroitin proteoglycan 2 of A. suum. Interestingly, a high level of Tc-cpg-2 was detected in female germline tissues, particularly in the oviduct, suggesting potential roles of this gene in reproduction (e.g. oogenesis and embryogenesis) of adult T. canis. The functional roles of Tc-cpg-2 in reproduction and development in this parasite and related parasitic nematodes warrant further functional studies.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achur, R.N., Kakizaki, I., Goel, S., Kojima, K., Madhunapantula, S.V., Goyal, A., Ohta, M., Kumar, S., Takagaki, K. & Gowda, D.C. (2008) Structural interactions in chondroitin 4-sulfate mediated adherence of Plasmodium falciparum infected erythrocytes in human placenta during pregnancy-associated malaria. Biochemistry 47, 1263512643.Google Scholar
Archelli, S., Santillan, G.I., Fonrouge, R., Céspedes, G., Burgos, L. & Radman, N. (2014) Toxocariasis: seroprevalence in abandoned-institutionalized children and infants. Revista Argentina De Microbiología 46, 36.Google Scholar
Boag, P.R., Gasser, R.B., Nisbet, A.J. & Newton, S.E. (2003) Genomics of reproduction in parasitic nematodes – fundamental and biotechnological implications. Biotechnology Advances 21, 103108.Google Scholar
Camaioni, A., Salustri, A., Yanagishita, M. & Hascall, V.C. (1996) Proteoglycans and proteins in the extracellular matrix of mouse cumulus cell–oocyte complexes. Archives of Biochemistry and Biophysics 325, 190198.Google Scholar
Cong, W., Meng, Q.F., You, H.L., Zhou, N., Dong, X.Y., Dong, W., Wang, X.Y., Qian, A.D. & Zhu, X.Q. (2015) Seroprevalence and risk factors of Toxocara infection among children in Shandong and Jilin provinces, China. Acta Tropica 152, 215219.Google Scholar
Dyck, S.M. & Karimi-Abdolrezaee, S. (2015) Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Experimental Neurology 269, 169187.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.Google Scholar
Frick, I.M., Schmidtchen, A. & Sjöbring, U. (2003) Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. European Journal of Biochemistry 270, 23032311.Google Scholar
Fthenou, E., Zafiropoulos, A., Tsatsakis, A., Stathopoulos, A., Karamanos, N.K. & Tzanakakis, G.N. (2006) Chondroitin sulfate A chains enhance platelet derived growth factor-mediated signalling in fibrosarcoma cells. International Journal of Biochemistry & Cell Biology 38, 21412150.CrossRefGoogle ScholarPubMed
Gallagher, J.T. (1989) The extended family of proteoglycans: social residents of the pericellular zone. Current Opinion in Cell Biology 1, 12011218.Google Scholar
Gamain, B., Gratepanche, S., Miller, L.H. & Baruch, D.I. (2002) Molecular basis for the dichotomy in Plasmodium falciparum adhesion to CD36 and chondroitin sulfate A. Proceedings of the National Academy of Sciences, USA 99, 1002010024.Google Scholar
Gasser, R.B., Korhonen, P.K., Zhu, X.Q. & Young, N.D. (2016) Harnessing the Toxocara genome to underpin toxocariasis research and new interventions. Advances in Parasitology 91, 87110.CrossRefGoogle ScholarPubMed
Gubbiotti, M.A. & Iozzo, R.V. (2015) Proteoglycans regulate autophagy via outside-in signaling: an emerging new concept. Matrix Biology 48, 613.Google Scholar
Hardingham, T. & Bayliss, M. (1990) Proteoglycans of articular cartilage changes in aging and in joint disease. Seminars in Arthritis and Rheumatism 20, 1233.Google Scholar
Hardingham, T.E. & Fosang, A.J. (1992) Proteoglycans: many forms and many functions. FASEB Journal 6, 861870.Google Scholar
Holland, C.V. (2015) Knowledge gaps in the epidemiology of Toxocara: the enigma remains. Parasitology 16, 114.Google Scholar
Hwang, H.Y. & Horvitz, H.R. (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide–sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proceedings of the National Academy of Sciences, USA 99, 1421814223.Google Scholar
Hwang, H.Y., Olsen, S.K., Esko, J.D. & Horvitz, H.R. (2003) Caenorhabditis elegans early embryogenesis and vulval morphogenesis depend on chondroitin biosynthesis. Nature 423, 439443.Google Scholar
Im, A.R., Kim, J.Y., Kim, H.S., Cho, S., Park, Y. & Kim, Y.S. (2013) Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology 24, 395102.Google Scholar
Iozzo, R.V. (1998) Matrix proteoglycans: from molecular design to cellular function. Annual Review of Biochemistry 67, 609652.Google Scholar
Izumikawa, T., Kitagawa, H., Mizuguchi, S., Nomura, K.H., Nomura, K., Tamura, J., Gengyo-Ando, K., Mitani, S. & Sugahara, K. (2004) Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. Journal of Biological Chemistry 279, 5375553761.CrossRefGoogle ScholarPubMed
Johnston, W.L., Krizus, A. & Dennis, J.W. (2006) The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C . elegans embryo. BMC Biology 4, 35.Google Scholar
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772780.Google Scholar
Kwok, J.C., Dick, G., Wang, D. & Fawcett, J.W. (2011) Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology 71, 10731089.Google Scholar
Laabs, T.L., Wang, H., Katagiri, Y., McCann, T., Fawcett, J.W. & Geller, H.M. (2007) Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. Journal of Neuroscience 27, 1449414501.CrossRefGoogle ScholarPubMed
Lalitha, S. (2004) Primer Premier 5. Biotechnology Software & Internet Journal 1, 270272.Google Scholar
Lee, R.M., Moore, L.B., Bottazzi, M.E. & Hotez, P.J. (2014) Toxocariasis in North America: a systematic review. PLoS Neglected Tropical Diseases 8, e3116.CrossRefGoogle ScholarPubMed
Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C. & Bryant, S.H. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Research 43, D222–226.CrossRefGoogle ScholarPubMed
Mardberg, K., Trybala, E., Tufaro, F. & Bergström, T. (2002) Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate-expressing gro2C cells. Journal of General Virology 83, 291300.Google Scholar
Miller, G.M. & Hsieh-Wilson, L.C. (2015) Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Experimental Neurology 274, 115125.Google Scholar
Mizuguchi, S., Uyama, T., Kitagawa, H., Nomura, K.H., Dejima, K., Gengyo-Ando, K., Mitani, S., Sugahara, K. & Nomura, K. (2003) Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans . Nature 423, 443448.Google Scholar
Morgenstern, D.A., Asher, R.A. & Fawcett, J.W. (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Progress in Brain Research 137, 313332.Google Scholar
Nisbet, A.J., Cottee, P.A. & Gasser, R.B. (2004) Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. International Journal for Parasitology 34, 125138.Google Scholar
Nisbet, A.J., Cottee, P.A. & Gasser, R.B. (2008) Genomics of reproduction in nematodes: prospects for parasite intervention? Trends in Parasitology 24, 8995.Google Scholar
Olson, S.K., Bishop, J.R., Yates, J.R., Oegema, K. & Esko, J.D. (2006) Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2. Journal of Cell Biology 173, 985994.CrossRefGoogle ScholarPubMed
Othman, A.A. (2012) Therapeutic battle against larval toxocariasis: are we still far behind? Acta Tropica 124, 171178.Google Scholar
Overgaauw, P.A. & van Knapen, F. (2013) Veterinary and public health aspects of Toxocara spp. Veterinary Parasitology 193, 398403.Google Scholar
Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.Google Scholar
Poulsen, C.S., Skov, S., Yoshida, A., Skallerup, P., Maruyama, H., Thamsborg, S.M. & Nejsum, P. (2015) Differential serodiagnostics of Toxocara canis and Toxocara cati – is it possible? Parasite Immunology 37, 204207.Google Scholar
Pradel, G., Garapaty, S. & Frevert, U. (2002) Proteoglycans mediate malaria sporozoite targeting to the liver. Molecular Microbiology 45, 637651.Google Scholar
Roy, A., Kucukura, A. & Zhang, Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5, 725738.Google Scholar
Rubinsky-Elefant, G., Hirata, C.E., Yamamoto, J.H. & Ferreira, M.U. (2010) Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Annals of Tropical Medicine and Parasitology 104, 323.CrossRefGoogle ScholarPubMed
Ruoslahti, E. (1988) Structure and biology of proteoglycans. Annual Review of Cell Biology 4, 229255.CrossRefGoogle ScholarPubMed
Sahu, S., Samanta, S., Sudhakar, N.R., Raina, O.K., Gupta, S.C., Maurya, P.S., Pawde, A.M. & Kumar, A. (2014) Prevalence of canine toxocariasis in Bareilly, Uttar Pradesh, India. Journal of Parasitic Diseases 38, 111115.CrossRefGoogle ScholarPubMed
Sato, M., Grant, B.D., Harada, A. & Sato, K. (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans . Journal of Cell Science 121, 31773186.Google Scholar
Schaefer, L. (2014) Proteoglycans, key regulators of cell-matrix dynamics. Matrix Biology 35, 12.Google Scholar
Schaefer, L. & Schaefer, R.M. (2010) Proteoglycans: from structural compounds to signaling molecules. Cell and Tissue Research 339, 237246.CrossRefGoogle ScholarPubMed
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D. & Higgins, D.G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539.Google Scholar
Strube, C., Heuer, L. & Janecek, E. (2013) Toxocara spp. infections in paratenic hosts. Veterinary Parasitology 193, 375389.Google Scholar
Urquhart, G.M., Armour, J., Duncan, J.L., Dunn, A.M. & Jennings, F.W. (2003) Veterinary parasitology. Scotland, Blackwell Science.Google Scholar
Whitten, S.J. & Miller, M.A. (2007) The role of gap junctions in Caenorhabditis elegans oocyte maturation and fertilization. Developmental Biology 301, 432446.CrossRefGoogle ScholarPubMed
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y. (2015) The I-TASSER Suite: protein structure and function prediction. Nature Methods 12, 78.CrossRefGoogle ScholarPubMed
Yi, J.H., Katagiri, Y., Susarla, B., Figge, D., Symes, A.J. & Geller, H.M. (2012) Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. Journal of Comparative Neurology 520, 32953313.CrossRefGoogle ScholarPubMed
Zhou, R.Q., Ma, G.X., Korhonen, P.K., Luo, Y.-L., Zhu, H.H., Luo, Y.-F., Gasser, R.B. & Xia, Q.Y. (2017) Comparative transcriptomic analyses of male and female adult Toxocara canis . Gene 600, 8589.Google Scholar
Zhu, X.Q., Korhonen, P.K., Cai, H., Young, N.D., Nejsum, P., von Samson-Himmelstjerna, G., Boag, P.R., Tan, P., Li, Q., Min, J., Yang, Y., Wang, X., Fang, X., Hall, R.S., Hofmann, A., Sternberg, P.W., Jex, A.R. & Gasser, R.B. (2015) Genetic blueprint of the zoonotic pathogen Toxocara canis . Nature Communications 6, 6145.Google Scholar