Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-07T05:17:03.966Z Has data issue: true hasContentIssue false

Molecular and catalytic properties of an arginine kinase from the nematode Ascaris suum

Published online by Cambridge University Press:  25 July 2011

M. Nagataki
Affiliation:
Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Kochi783-8505, Japan
K. Uda
Affiliation:
Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi, 780-8520, Japan
B.R. Jarilla
Affiliation:
Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Kochi783-8505, Japan
S. Tokuhiro
Affiliation:
Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Kochi783-8505, Japan
S. Wickramasinghe
Affiliation:
Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Kochi783-8505, Japan
T. Suzuki
Affiliation:
Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi, 780-8520, Japan
D. Blair
Affiliation:
School of Marine and Tropical Biology, James Cook University, Townsville, Queensland4811, Australia
T. Agatsuma*
Affiliation:
Department of Environmental Health Sciences, Kochi Medical School, Oko, Nankoku City, Kochi783-8505, Japan
*
*Fax: +81 88 880 2535 E-mail: [email protected]

Abstract

We amplified the cDNA coding for arginine kinase (AK) from the parasitic nematode Ascaris suum, cloned it in pMAL plasmid and expressed the enzyme as a fusion protein with the maltose-binding protein. The whole cDNA was 1260 bp, encoding 400 amino acids, and the recombinant protein had a molecular mass of 45,341 Da. Ascaris suum recombinant AK showed significant activity and strong affinity for the substrate l-arginine. It also exhibited high catalytic efficiency comparable with AKs from other organisms. Sequence analysis revealed high amino acid sequence identity between A. suum AK and other nematode AKs, all of which cluster in a phylogenetic tree. However, comparison of gene structures showed that A. suum AK gene intron/exon organization is quite distinct from that of other nematode AKs. Phosphagen kinases (PKs) from certain parasites have been shown to be potential novel drug targets or tools for detection of infection. The characterization of A. suum AK will be useful in the development of strategies for control not only of A. suum but also of related species infecting humans.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzi, A., Clark, S.A., Ellington, W.R. & Chapman, M.S. (2004) The role of phosphagen specificity loops in arginine kinase. Protein Sciences 13, 575585.CrossRefGoogle ScholarPubMed
Bendtsen, J.D., Nielsen, H., Heijne, G.V. & Brunak, S. (2004) Improved prediction of signal peptides: signalP 3.0. Journal of Molecular Biology 340, 783795.CrossRefGoogle ScholarPubMed
Brown, A.E. & Grossman, S.H. (2004) The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Archives of Insect Biochemistry and Physiology 56, 166177.CrossRefGoogle Scholar
Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Claros, M.G. & Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. European Journal of Biochemistry 241, 779786.CrossRefGoogle ScholarPubMed
Claudio, A.P., Guillermo, D.A., Cristina, M.P., Adolfo, I., Laura, M.C., Hector, N.T. & Mirtha, M.F. (2000) Trypanosoma cruzi arginine kinase characterisation and cloning. A novel energetic pathway in protozoan parasites. Journal of Biological Chemistry 275, 14951501.Google Scholar
Cleland, W.W. (1967) The statistical analysis of enzyme kinetic data. Advances in Enzymology and Related Areas of Molecular Biology 29, 132.Google Scholar
Compaan, D.M. & Ellington, W.R. (2003) Functional consequences of a gene duplication and fusion event in an arginine kinase. Journal of Experimental Biology 206, 15451556.CrossRefGoogle Scholar
Crompton, D.W. (1999) How much human helminthiasis is there in the world? Journal of Parasitology 85, 397403.CrossRefGoogle ScholarPubMed
Ellington, W.R. (2000) A dimeric creatine kinase from a sponge: implications in terms of phosphagen kinase evolution. Comparative Biochemistry and Physiology, B 126, 17.CrossRefGoogle ScholarPubMed
Ellington, W.R. (2001) Evolution and physiological roles of phosphagen systems. Annual Review of Physiology 63, 289325.CrossRefGoogle ScholarPubMed
Emanuelsson, O., Nielsen, H., Brunak, S. & Heijne, G.V. (2000) Predicting subcellular localisation of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300, 10051016.CrossRefGoogle ScholarPubMed
Fujimoto, N., Tanaka, K. & Suzuki, T. (2005) Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. FEBS Letters 579, 16881692.CrossRefGoogle ScholarPubMed
Gattis, J.L., Ruben, E., Fenley, M.O., Ellington, W.R. & Chapman, M.S. (2004) The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Biochemistry 43, 86808689.CrossRefGoogle ScholarPubMed
Gomi, M., Sonoyama, M. & Mitaku, S. (2004) High performance system for signal peptide prediction: SOSUI signal. Chemistry–Biology Informatics Journal 4, 142147.Google Scholar
Harcus, Y.M., Parkinson, J., Fernández, C., Daub, J., Selkirk, M.E., Blaxter, M.L. & Maizels, R.M. (2004) Signal sequence analysis of expressed sequence tags from the nematode Nippostrongylus brasiliensis and the evolution of secreted proteins in parasites. Genome Biology 5, 39.CrossRefGoogle ScholarPubMed
Horton, P., Park, K.J., Obayashi, T. & Nakai, K. (2006) Protein subcellular localisation prediction with WoLF PSORT. Proceedings of Fourth Annual Asian Pacific Bioinformatics Conference 6, 3948.Google Scholar
Iwanami, K., Iseno, S., Uda, K. & Suzuki, T. (2009) A novel arginine kinase from the shrimp Neocaridina denticulata: The fourth arginine kinase gene lineage. Gene 437, 8087.CrossRefGoogle ScholarPubMed
Kakihara, D., Yoshimitsu, K., Ishigami, K., Irie, H., Aibe, H., Tajima, T., Shinozaki, K., Nishie, A., Nakayama, T., Hayashida, K., Nakamuta, M., Nawata, H. & Honda, H. (2004) Liver lesions of visceral larva migrans due to Ascaris suum infection: CT findings. Abdominal Imaging 29, 598602.CrossRefGoogle ScholarPubMed
Klein, S.C., Haas, R.C., Perryman, M.B., Billadello, J.J. & Strauss, A.W. (1991) Regulatory element analysis and structural characterisation of the human sarcomeric mitochondrial creatine kinase gene. Journal of Biochemistry 266, 1805818065.Google ScholarPubMed
Logan, D.A., James, G., Mark, J.S. & Dean, F. (2008) Characterisation of a novel bacterial arginine kinase from Desulfotalea psychrophila. Comparative Biochemistry and Physiology, B 150, 312319.Google Scholar
Matsushima, K., Uda, K., Ishida, K., Kokufuta, C., Iwasaki, N. & Suzuki, T. (2006) Comparison of kinetic constants of creatine kinase isoforms. International Journal of Biological Macromolecules 38, 8388.CrossRefGoogle ScholarPubMed
Morrison, J.F. (1973) Arginine kinase and other invertebrate guanidine kinases. pp. 457486in Boyer, P.C. (Ed.) The enzymes. New York, Academic Press.Google Scholar
Morrison, J.F. & James, E. (1965) The mechanism of the reaction catalyzed by adenosine triphosphate-creatine phosphotransferase. Biochemical Journal 97, 3752.CrossRefGoogle Scholar
Nakai, K. & Horton, P. (1999) PSORT: a program for detecting the sorting signals in proteins and predicting their subcellular localisation. Trends in Biochemical Sciences 24, 3435.CrossRefGoogle Scholar
Olav, K. & Johannes, H.G.M.V.B. (2007) Creatine kinase in energy metabolic signaling in muscle. Nature Precedings (unpublished).Google Scholar
Pearson, M.S., McManus, D.P., Smyth, D.J., Lewis, F.A. & Loukas, A. (2005) In vitro and in silico analysis of signal peptides from the human blood fluke, Schistosoma mansoni. FEMS Immunology and Medical Microbiology 45, 201211.CrossRefGoogle ScholarPubMed
Pereira, C.A., Alonso, G.D., Torres, H.N. & Flawia, M.M. (2002) Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids. Journal of Eukaryotic Microbiology 49, 8285.CrossRefGoogle ScholarPubMed
Pereira, C., Bouvier, L.A., Torres, H.N. & Flawia, M.M. (2003a) Screening of substrate analogs as potential enzyme inhibitors for the arginine kinase of Trypanosoma cruzi. Journal of Eukaryotic Microbiology 50, 132134.CrossRefGoogle ScholarPubMed
Pereira, C.A., Alonso, G.D., Ivaldi, M.S., Silber, A.M., Alves, M.J.M., Torres, H.N. & Flawia, M.M. (2003b) Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Letters 554, 201205.CrossRefGoogle ScholarPubMed
Pruett, P.S., Azzi, A., Clark, S.A., Yousef, M.S., Gattis, J.L., Somasundaram, T., Ellington, W.R. & Chapman, M.S. (2003) The catalytic bases, at most, have an accessory role in the mechanism of arginine kinase. Journal of Biochemistry 278, 2695226957.Google ScholarPubMed
Robert, M.T. & Bennett, M.S. (1987) Enzyme termini of a phosphocreatine shuttle. Journal of Biological Chemistry 262, 1601116019.Google Scholar
Robert, V.T., Arnold, W.S. & Joseph, J.B. (1988) Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. Journal of Biological Chemistry 263, 1714217149.Google Scholar
Rockstein, M. & Kumar, S.S. (1972) Arginine kinase from the housefly, Musca domestica: purification and properties. Insect Biochemistry 2, 344352.CrossRefGoogle Scholar
Rosenthal, G.A., Dahlman, D.L. & Robinson, G.W. (1977) L-Arginine kinase from tobacco hornworm, Manduca sexta (L.). Purification, properties, and interaction with L-canavanine. Journal of Biological Chemistry 252, 36793683.CrossRefGoogle ScholarPubMed
Sakakibara, A., Baba, K., Niwa, S., Yagi, T., Wakayama, H., Yoshida, K., Kobayashi, T., Yokoi, T., Hara, K., Itoh, M. & Kimura, E. (2002) Visceral larva migrans due to Ascaris suum which presented with eosinophilic pneumonia and multiple intra-hepatic lesions with severe eosinophil infiltration – outbreak in a Japanese area other than Kyushu. Internal Medicine 41, 574579.CrossRefGoogle Scholar
Small, I., Peeters, N., Legeai, F. & Lurin, C. (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 15811590.CrossRefGoogle ScholarPubMed
Sookrung, N., Chaicumpa, W., Tungtrongchitr, A., Vichyanond, P., Bunnag, C., Ramasoota, P., Tongtawe, P., Sakolvaree, Y. & Tapchaisri, P. (2006) Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environmental Health Perspectives 114, 875880.CrossRefGoogle Scholar
Suzuki, T., Kawasaki, Y. & Furukohri, T. (1997) Evolution of phosphagen kinase. Isolation, characterisation and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus. Biochemical Journal 328, 301306.CrossRefGoogle ScholarPubMed
Suzuki, T., Fukuta, H., Nagato, H. & Umekawa, M. (2000a) Arginine kinase from Nautilus pompilius, a living fossil. Journal of Biological Chemistry 275, 2388423890.CrossRefGoogle ScholarPubMed
Suzuki, T., Yamamoto, Y. & Umekawa, M. (2000b) Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system. Biochemistry Journal 351, 579585.CrossRefGoogle ScholarPubMed
Suzuki, T., Tomoyuki, T. & Uda, K. (2003) Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica. FEBS Letters 533, 9598.CrossRefGoogle ScholarPubMed
Suzuki, T., Uda, K., Adachi, M., Sanada, H., Tanaka, K., Mizuta, C., Ishida, K. & Ellington, W.R. (2009) Evolution of the diverse array of phosphagen systems present in annelids. Comparative Biochemistry and Physiology, B 152, 6066.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular and Biological Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Tanaka, K., Ichinari, S., Iwanami, K., Yoshimatsu, S. & Suzuki, T. (2007) Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Insect Biochemistry and Molecular Biology 37, 338345.CrossRefGoogle ScholarPubMed
Thoai, N.V. (1968) Homologous phosphagen phosphokinases. pp. 199229in Thoai, N.V. & Roche, J. (Eds) Homologous enzymes and biochemical evolution. New York, Gordon & Breach.Google Scholar
Tokojima, M., Ashitani, J. & Nakazato, M. (2004) A case of eosinophilic pneumonia caused by visceral larva migrans due to Ascaris suum. Kansenshogaku Zasshi 78, 10361040(in Japanese).CrossRefGoogle ScholarPubMed
Uda, K. & Suzuki, T. (2007) A novel arginine kinase with substrate specificity towards D-arginine. Protein Journal 5, 281291.CrossRefGoogle Scholar
Uda, K., Saishoji, N., Ichinari, S., Ellington, W.R. & Suzuki, T. (2005) Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. FEBS Letters 272, 35213530.CrossRefGoogle ScholarPubMed
Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R. & Suzuki, T. (2006) Evolution of the arginine kinase gene family. Comparative Biochemistry and Physiology 1, 209218.Google ScholarPubMed
Valdur, S., Petras, D., Uwe, S., Marko, V., Andre, T. & Theo, W. (2006) Cardiac system bioenergetics: metabolic basis of the Frank–Starling law. Journal of Physiology 571, 253273.Google Scholar
Wallimann, T. & Eppenberger, H.M. (1973) Properties of arginine kinase from Drosophila melanogaster. European Journal of Biochemistry 38, 180184.CrossRefGoogle ScholarPubMed
Watts, D.C. (1968) The origin and evolution phosphagen phosphotransferases. pp. 279296in Thoai, N.V. & Roche, J. (Eds) Homologous enzymes and biochemical evolution. New York, Gordon & Breach.Google Scholar
Wickramasinghe, S., Uda, K., Nagataki, M., Yatawara, L., Rajapakse, R.P.V.J., Watanabe, Y., Suzuki, T. & Agatsuma, T. (2007) Toxocara canis: molecular cloning, characterisation, expression and comparison of the kinetics of cDNA-derived arginine kinase. Experimental Parasitology 117, 124132.CrossRefGoogle ScholarPubMed
Wickramasinghe, S., Yatawara, L., Nagataki, M., Takamoto, M., Watanabe, Y., Rajapakse, R.P.V.J., Uda, K., Suzuki, T. & Agatsuma, T. (2008) Development of a highly sensitive IgG-ELISA based on recombinant arginine kinase of Toxocara canis for serodiagnosis of visceral larva migrans in the murine model. Parasitology Research 103, 853858.CrossRefGoogle ScholarPubMed
Wu, Q., Li, F., Zhu, W. & Wang, X. (2007) Cloning, expression, purification, and characterisation of arginine kinase from Locusta migratoria manilensis. Comparative Biochemistry and Physiology, B 148, 355362.CrossRefGoogle ScholarPubMed
Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R. & Chapman, M.S. (1998) Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proceedings of the National Academy of Sciences, USA 95, 84498454.CrossRefGoogle ScholarPubMed